J 2024

Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation

BOYKO, Vyacheslav, Roman POPOVYCH a Oleksandra VINNICHENKO

Základní údaje

Originální název

Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation

Autoři

BOYKO, Vyacheslav, Roman POPOVYCH a Oleksandra VINNICHENKO

Vydání

Communications in Nonlinear Science and Numerical Simulation, Amsterdam, Elsevier B.V. 2024, 1007-5704

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 3.900 v roce 2022

Organizační jednotka

Matematický ústav v Opavě

UT WoS

001198218800001

Klíčová slova anglicky

Dispersionless Nizhnik equation; Point-symmetry pseudogroup; Lie invariance algebra; Discrete symmetry

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 29. 1. 2025 14:03, Mgr. Aleš Ryšavý

Anotace

V originále

Applying an original megaideal-based version of the algebraic method, we compute the pointsymmetry pseudogroup of the dispersionless (potential symmetric) Nizhnik equation. This is the first example of this kind in the literature, where there is no need to use the direct method for completing the computation. The analogous studies are also carried out for the corresponding nonlinear Lax representation and the dispersionless counterpart of the symmetric Nizhnik system. We also first apply the megaideal-based version of the algebraic method to find the contact -symmetry (pseudo)group of a partial differential equation. It is shown that the contact -symmetry pseudogroup of the dispersionless Nizhnik equation coincides with the first prolongation of its point -symmetry pseudogroup. We check whether the subalgebras of the maximal Lie invariance algebra of the dispersionless Nizhnik equation that naturally arise in the course of the above computations define the diffeomorphisms stabilizing this algebra or its first prolongation. In addition, we construct all the third -order partial differential equations in three independent variables that admit the same Lie invariance algebra. We also find a set of geometric properties of the dispersionless Nizhnik equation that exhaustively defines it.