2024
M-harmonic Szegö Kernel on the Ball
BLASCHKE, Petr and Miroslav ENGLIŠBasic information
Original name
M-harmonic Szegö Kernel on the Ball
Authors
Edition
Singapore, The Bergman Kernel and Related Topics, Hayama Symposium on SCV XXIII, Kanagawa, Japan, July 2022, p. 105-120, 16 pp. 2024
Publisher
Springer Singapore
Other information
Language
English
Type of outcome
Proceedings paper
Field of Study
10101 Pure mathematics
Country of publisher
Singapore
Confidentiality degree
is not subject to a state or trade secret
Publication form
printed version "print"
RIV identification code
RIV/47813059:19610/24:A0000154
Organization unit
Mathematical Institute in Opava
ISBN
978-981-99-9505-9
ISSN
UT WoS
001258800500002
EID Scopus
2-s2.0-85189546767
Keywords in English
Hypergeometric functions; Invariant Laplacian; M-harmonic function; Szegö kernel
Tags
International impact, Reviewed
Links
GA21-27941S, research and development project.
Changed: 5/3/2025 14:16, Mgr. Aleš Ryšavý
Abstract
In the original language
We give a description of the boundary singularity of the Szegö kernel of M-harmonic functions, i.e. functions annihilated by the invariant Laplacian, on the unit ball of the complex n-space, in terms of the Gauss hypergeometric functions.