J 2024

Explaining QPOs data for black holes in the Starobinsky-Bel-Robinson gravity

ABDULKHAMIDOV, Farukh, Bakhtiyor NARZILLOEV, Ibrar HUSSAIN, Ahmadjon ABDUJABBAROV, Bobomurat AHMEDOV et. al.

Basic information

Original name

Explaining QPOs data for black holes in the Starobinsky-Bel-Robinson gravity

Authors

ABDULKHAMIDOV, Farukh (860 Uzbekistan, belonging to the institution), Bakhtiyor NARZILLOEV, Ibrar HUSSAIN, Ahmadjon ABDUJABBAROV (860 Uzbekistan) and Bobomurat AHMEDOV (860 Uzbekistan)

Edition

European Physical Journal C, New York (USA), SPRINGER, 2024, 1434-6044

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10308 Astronomy

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 4.400 in 2022

Organization unit

Institute of physics in Opava

UT WoS

001207215100005

Keywords in English

quasi-periodic oscillations;charged particles;magnetic-field;circular orbits;motion;model;quintessence;precession;accration;signature

Tags

Tags

International impact, Reviewed

Links

GA23-07043S, research and development project.
Změněno: 4/2/2025 11:51, Mgr. Pavlína Jalůvková

Abstract

V originále

In this work we explore the properties of the spacetime around the Schwarzschild-like black hole in the Starobinsky–Bel–Robinson gravity through a test particle motion and its quasi periodic oscillations (QPOs) in the circular orbits in the close vicinity of the black hole horizon. We show how the extra spacetime parameter β affects the effective potential, energy, angular momentum, inner most circular orbit (ISCO) radius, and trajectory of a test particle. Next, we focus on the QPOs of particles and explore it in the relativistic precision model. Finally, we apply our analysis to explain the observational data obtained for several black hole candidates including GRO J1655-40, GRS 1915+105, XTE J1859+226, and XTE J1550-564 and get constraints on their spacetime parameters by employing the Markov Chain Monte Carlo analysis methodology.