UFTF001 Special Relativity

Faculty of Philosophy and Science in Opava
Summer 2020
Extent and Intensity
4/2/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Stanislav Hledík, Ph.D. (lecturer)
RNDr. Martin Blaschke, Ph.D. (seminar tutor)
RNDr. Kateřina Klimovičová, Ph.D. (seminar tutor)
RNDr. Daniel Charbulák, Ph.D. (seminar tutor)
Guaranteed by
doc. RNDr. Stanislav Hledík, Ph.D.
Centrum interdisciplinárních studií – Faculty of Philosophy and Science in Opava
Timetable
Tue 15:35–18:50 404
  • Timetable of Seminar Groups:
UFTF001/A: Tue 13:55–15:30 MM-UF, D. Charbulák
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The lecture introduces the basics of the special theory of relativity to enable training in continuing theoretical subjects. Explanation is connected to lecture entitled Classical Electrodynamics.
Syllabus
  • Recap of Newtonian mechanics. Coordinate system, absolute time and absolute distance inertial system, Newton's equations of motion, mass, Galileo's principle of relativity, Galileo transformation and covariance of Newton's equations of motion, actio in distans disruption of Galileo's principle of relativity by electromagnetic phenomena, covariance failure of Maxwell equations under the Galilei transformations ether, attempts to detect movement of the Sun and the Earth to ether, aberration of fixed stars, Romer type experiments, Michelson experiment, Kennedy-Thorndike experiment Mach's principle.
    Postulates of the special theory of relativity. Inertial system, Einstein's relativity principle, the principle of universality of the speed of light, clock synchronization, relativity of simultaneity, the definition of length, time dilation and its experimental evidence, length contraction.
    Kinematics of the special theory of relativity. Lorentz transformation special Lorentz group transformations components of velocity and acceleration spacetime interval and the light cone, causality Lorentz transformation for an arbitrary direction of the velocity (boost) and its properties infinitesimal Lorentz transformation Thomas precession.
    Minkowski spacetime. Geometric interpretation of the special Lorentz transformations, world lines, world tubes surfaces and hypersurfaces in spacetime, general Lorentz group and its subgroups tensors in Minkowski spacetime, the metric tensor, tensor transformation properties 4-velocity and 4-acceleration integration in Minkowski spacetime.
    Relativistic mechanics and electrodynamics. Action functional and Lagrangian (Lagrangian density) of the system {electromagnetic field + electric charges}, Maxwell's equations and the equation of motion for charge in an electromagnetic field mass, energy and momentum, 4-momentum force, 4-force, Lorentz 4-force uniformly accelerated motion collisions Compton effect the relationship between the mass, energy and momentum energy-momentum tensor and the foundations of relativistic hydrodynamics relativistic Tsiolkovsky formula. 4-vector of current density, 4-potential, 4-tensor of the electromagnetic field, reformulation of Maxwell's equations in covariant form motion of charged particles in an external electromagnetic field electromagnetic field invariants plane electromagnetic wave, the wave 4-vector Doppler effect and aberration optical appearance of objects moving at relativistic speed.
    Current information and additional study materials can be found here: http://www.hledik.org/
Language of instruction
Czech
Further Comments
Study Materials
The course can also be completed outside the examination period.
Teacher's information
At least 80% tutorial attendance, successful credit test. The exam is both written (three problems) and oral. Further details can be found on the website (see link at the Content).
The course is also listed under the following terms Summer 2014, Summer 2015, Summer 2016, Summer 2017, Summer 2018, Summer 2019, Summer 2021, Summer 2022, Summer 2023, Summer 2024.
  • Enrolment Statistics (Summer 2020, recent)
  • Permalink: https://is.slu.cz/course/fpf/summer2020/UFTF001