FPF:UIMOIBP037 Mathematics II - Course Information
UIMOIBP037 Mathematics II
Faculty of Philosophy and Science in OpavaSummer 2021
- Extent and Intensity
- 2/3/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Luděk Cienciala, Ph.D. (lecturer)
doc. RNDr. Luděk Cienciala, Ph.D. (seminar tutor)
doc. RNDr. Lucie Ciencialová, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Luděk Cienciala, Ph.D.
Institute of Computer Science – Faculty of Philosophy and Science in Opava - Timetable
- Mon 9:45–11:20 B1
- Timetable of Seminar Groups:
- Prerequisites
- TYP_STUDIA(B)
Mathematics I - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Information and communication technologies (programme FPF, MOI)
- Course objectives
- The aim of the course is to acquaint students with the basic concepts of algebra.
- Learning outcomes
- After completing the course, the student will be able to:
- analyze and solve basic problems within the scope of the course. - Syllabus
- 1. Set theory, relations between sets, operations with sets, commutative, associative and distributive law.
2. Sessions binary relation in the set, display sets, narrowing, expansion, surjection, injection, bijection, identity, equivalence and decomposition sets, ordered sets.
3. Operations and set their properties.
4. Algebras, subalgebras, homomorphisms, groupoids, semigroups and groups, half circles, rings and fields.
5. Vector spaces, linear independence, basis and dimension of vector spaces, isomorphism of vector spaces, coordinate system.
6. Matrices, determinants, rank matrices, systems of linear equations. Forms on vector spaces, linear forms, bilinear forms, quadratic forms.
7. Linear, Linear vector spaces and matrices, linear transformations of a vector space.
8. Introduction to graph theory.
- 1. Set theory, relations between sets, operations with sets, commutative, associative and distributive law.
- Literature
- required literature
- CIENCIALA Luděk. Matematika II. Skripta. 76 stran. Slezská univerzita v Opavě, 2017.
- recommended literature
- V. Jarník. Diferenciální počet I-II. info
- VOPĚNKA, Petr. Nová infinitní matematika II: Nová teorie množin a polomnožin. Praha: nakladatelství Karolinum, 2015. ISBN 978-80-246-2986-5. info
- VOPĚNKA, Petr. Nová infinitní matematika IV: Staronový diferenciální počet. Praha: nakladatelství Karolinum, 2015. ISBN 978-80-246-2984-1. info
- DVOŘÁKOVÁ, L. Lineární algebra 1. Praha: ČVUT Praha, 2014. ISBN 978-80-01-05346-1. info
- Cienciala, L., Ciencialová, L. Teorie grafů a grafové algoritmy. Slezská univerzita v Opavě, 2014. ISBN 978-80-7510-060-3. info
- WILLERS, Michael. Algebra bez (m)učení: od arabských matematiků k tajným šifrám: matematika v každodenním životě: fascinující čísla a rovnice. Praha: Grada, 2012. ISBN 978-80-247-4123-9. info
- Došlá, Z., Kuben, J. Diferenciální počet funkcí jedné proměnné. Brno: MU, 2004. info
- Míka, S., Drábek, P. Matematická analýza I. ZČU Plzeň, 2003. info
- Děmidovič Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. 2003. ISBN 80-7200-587-1. info
- DEVLIN, K. Jazyk matematiky. Praha: Argo, 2002. ISBN 80-7203-470-7. info
- Černý, I., Rokyta, M. Differential and integral calculus of one real variable. Praha, Karolinum, 1998. info
- BROŽKOVÁ, A. Cvičení z matematické analýzy I, II. Pedagogická fakulta Ostravské univerzity, 1995. info
- Teaching methods
- Interactive lecture
Lecture with a video analysis - Assessment methods
- Credit:
The student writes within the exercises two credit tests scored a maximum of 30 points for each. He also submits solutions to five homework assignments. He gets a maximum of 8 points for each homework. 50 points are required to obtain the credit. The points obtained during the semester are multiplied by a coefficient of 0.4 and rounded up. Points recalculated in this way are included in the test.
Exam:
The student can get a maximum of 60 points from the exam test. You need to get 30 points to succeed. To determine the mark from the exam, the points obtained in the semester from the credit tests and the exam test are added up. The maximum number of points is 100. - Language of instruction
- Czech
- Further Comments
- Study Materials
- Enrolment Statistics (Summer 2021, recent)
- Permalink: https://is.slu.cz/course/fpf/summer2021/UIMOIBP037