FPF:UFTFA59 Theoretical Particle Physics I - Course Information
UFTFA59 Theoretical Particle Physics I
Faculty of Philosophy and Science in OpavaWinter 2020
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Josef Juráň, Ph.D. (lecturer)
prof. Ing. Peter Lichard, DrSc. (lecturer)
RNDr. Filip Blaschke, Ph.D. (seminar tutor)
prof. Ing. Peter Lichard, DrSc. (seminar tutor) - Guaranteed by
- prof. Ing. Peter Lichard, DrSc.
Centrum interdisciplinárních studií – Faculty of Philosophy and Science in Opava - Prerequisites
- TYP_STUDIA(N)
TF007 Quantum Field Theory I, TF009 Quantum Field Theory II - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Theoretical Physics (programme FPF, N1701 Fyz)
- Course objectives
- This subject is intended for students specializing in theoretical subnuclear physics. It deals with the Standard Model, the gauge theory of electroweak interactions.
- Syllabus
- Symmetry and groups. Elements of group theory. Lie groups and Lie algebra. Unitary symmetry. Fundamental and higher representations. Isospin and SU(2) group. Classification of hadrons by representations of SU(3). Quark model, flavor and color.
Gauge field theory. Symmetry and interaction. Commutative and non-commutative gauge invariance. Spontaneous breaking of global symmetry, the basic idea, breaking of discrete, commutative and non-commutative symmetry. Spontaneous breaking of local symmetry, commutative and non-commutative case.
The standard model of electroweak interactions. Previous theories of weak interactions. The gauge model with one lepton family and one quark family. Multigenerational model. GIM mechanism (Glashow, Iliopoulos, Maian). Classification of fermions, CKM matrix (Cabibbo, Kobayashi, Maskawa). Feynman rules. Selected processes. Neutral currents. Experimental verification of the standard model of electroweak interactions. Lepton mixing. Neutrino oscillations.
- Symmetry and groups. Elements of group theory. Lie groups and Lie algebra. Unitary symmetry. Fundamental and higher representations. Isospin and SU(2) group. Classification of hadrons by representations of SU(3). Quark model, flavor and color.
- Literature
- recommended literature
- Dosch, H.G. Za hranicemi nanosvěta. Leptony, kvarky, kalibrační bosony. Academia, 2011. ISBN 978-80-200-1871-7. info
- Hořejší J. Fundamentals of Elektroweak Theory. Nakladatelství Karolinum, 2002. ISBN 8024606399. info
- Ho-Kim, Q. - Pham, X. Y. Elementary Particles and Their Interactions. Springer, 1998. ISBN 3-540-63667-6. info
- Hořejší J. Elektroslabé sjednocení a stromová unitarita: nestandardní úvod do standardního modelu. Karolinum, 1993. ISBN 80-7066-674-9. info
- Guidry M. Gauge Field Theories. John Wiley & Sons, 1991. ISBN 047135385X. info
- Teaching methods
- Students' self-study
Lectures, tutorial sessions, regularly assigned and evaluated home tasks. - Assessment methods
- Credit
Active participation on tutorial sessions and the timely completion of home tasks is required. Detailed criteria will be announced by the tutorial lecturer. The exam consists of the main written part and a supplemental oral part. - Language of instruction
- English
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
- Teacher's information
- The attending of lectures is recommended, that of tutorial sessions is compulsory. If a student was absent for serious reasons, the teacher may prescribe him/her an alternative way of fulfilling the duties.
- Enrolment Statistics (Winter 2020, recent)
- Permalink: https://is.slu.cz/course/fpf/winter2020/UFTFA59