FPF:FPFVA034 Comp. geometry and graphic II - Course Information
FPFVA034 Computational geometry and computer graphics II
Faculty of Philosophy and Science in OpavaWinter 2021
- Extent and Intensity
- 0/1/0. 5 credit(s). Type of Completion: z (credit).
- Teacher(s)
- doc. RNDr. Luděk Cienciala, Ph.D. (seminar tutor)
- Guaranteed by
- doc. RNDr. Luděk Cienciala, Ph.D.
Faculty of Philosophy and Science in Opava - Prerequisites
- Computational geometry and computer graphics I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 22 fields of study the course is directly associated with, display
- Course objectives
- Content of the course is a computer graphics in 3D, basic algorithms, basic of geometry used in computer graphics
- Learning outcomes
- - Student will get acquaint with the typical problems of computational geometry and computer graphics in 3D.
- Student will understand the existing solutions and their applications in computer graphics in 3D.
- Student will get deeper knowledge of mathematics.
- Student will learn the principles of geometric algebra including its application in graphics and vision related tasks.
- Student will practice programming, problem solving and defence of a small project. - Syllabus
- 1. Surfaces and curves - introduction and properties, interpolation and aproximation surchaces
- Parametric surfaces, surface continuity - Parametric and geometric continuity, properties of surfaces
- Interpolation surfaces
- Aproximation surfaces: Hermit bicubic surface, twelve vector surface, sixteen vector surface
- Surfaces connecting two curves
- Surfaces set by border - bilinear Coons surface, bicubic surface, general bicubic surface
2. Bézier surface, B -spline surface, NURBS surface
- Bézier surface, properties
- Bézier bicubic surfaces
- Transformation of Bézier bicubic surfaces into triangle net
- B -spline surfaces, properties
- Bicubic B -Spline surfaces (Coons patch)
- NURBS surfaces, properties
3. Sweeping, skinning,
- Sweeping - translational, rotational and general sweeping
- Skinning
4. Implicit surfaces, Subdivision surfaces.
- Implicit surfaces, implicit surface modelling, potential function, implicit surface displaying
- Subdivision surfaces, splitting schemes, face -split, vertex -split, aproximation, interpolation, properties of splitting schemes, splitting scheme Doo -Sabin and Catmull -Clark
5. Solid representation and modelling
- Representation and modelling of solids, triangle mesh, triangle strip, triangle fan, decreasing the number of triangles, decimation of triangle meshes
- Boundary representation (B -rep), manifolds, nonmanifolds, wire -frame model, polyhedra representation, winged edge representation, point representation
6. Constructive solid geometry, modelling by deformation, volume solid representation.
- Constructive solid geometry, CSG tree
- Modelling by deformation, global and local deformation, Barr deformations, model elementary deformations, deformation by rescaling, tapering, twisting bending
- Free -form deformation
- Volume representation and multidimensional data. Cell, voxel, 6 -connected, 18 -connected, 26 -connected, surface finding, A set of contours in parallel cuts, surface reconstruction by sheathing of contours, transformation of isosurfaces into triangle meshes: algorithms Marching cubes, Marching tetrahedrons and Dividing cubes
7. Procedural Modelling, fractal geometry, particles systems.
- Procedural modelling, fractals, L systems, turtle graphics
- Fractal geometry, self -similarity, fractal dimension, multifractals, linear deterministic fractals, non -linear deterministic fractals, non -deterministic fractals, random fractals
- Random midpoint displacements, random faults method
- Diffusionlimitd aggregation - DLA
- Particle systems
8. Projection, parallel projection, central projection, viewing frustum, viewing transformations.
- Projection
- Parallel projection: ortographics, oblique
- Axonometric projection: isometric, dimetric, trimetric
- Oblique projection: cabinet, cavalier
- Central projection
- Unified projection
- Viewing volume
9. Light, lighting models, shading.
- Radiometry terms
- Radiance
- Bidirectional Reflectance Distribution Function, properties
- Local Illumination model
- Reflection, Differential reflection, Specular reflection
- Refraction
- Glossy reflection
- Phong Illumination model
- Light source, point light, Directional light, Area light, Spot light, general luminaires, sky
- Shading: flat, Gouraud and Phong shading.
10. Visibility.
- Line algorithms - Roberts algorithm, Appel algorithm, Weiler - Atherton algorithm,
- Raster algorithms -z -buffer, Painter's algorithm, Warnock subdivision algorithm
11. Shadows.
- Shadows, hard shadow, penumbra
- Projection methods
- Shadow volume
- Shadow depth map
12. Textures
- Classification of textures
- Texture mapping
- Inverse mapping
- Inverse mappping of cylindrical surfa
- 1. Surfaces and curves - introduction and properties, interpolation and aproximation surchaces
- Literature
- recommended literature
- Klawonn, F. Introduction to Computer Graphics: Using Java 2D and 3D. Springer, 2012. ISBN 9781447127321. info
- Sarfraz, M. Interactive Curve Modeling: With Applications to Computer Graphics, Vision and Image Processing. Springer, 2010. ISBN 9781849966634. info
- Mark de Berg a kol. Computational Geometry: Algorithms and Applications. Springer, 2008. ISBN 9783540779735. info
- Agoston, K., M. Computer Graphics and Geometric Modelling: Implementation & Algorithms. Springer, 2005. ISBN 9781852338183. info
- Egerton, P. A., Hall, W. S. Computer Graphics - Mathematical first steps. Pearson Education, 1999. info
- ŽÁRA, J., BENEŠ, B., FENKEL, P. Moderní počítačová grafika. Brno Computer Press, 1998. ISBN 80-7226-049-9. info
- Hudec, J. Algoritmy počítačové grafiky. Praha, ČVUT, 1997. info
- Granát, L., Selechovský, H. Počítačová grafika. Praha, ČVUT, 1995. info
- Drs, L., Ježek, F., Novák, J. Počítačová grafika. Praha, ČVUT, 1995. info
- Sobota, B. Počítačová grafika a jazyk C. České Budějovice, KOOP, 1995. info
- Žára, J., Sochor, J. Algoritmy počítačové grafiky. ČVUT Praha, 1993. info
- Skála, V. Světlo, barvy a barevné systémy v počítačové grafice. Praha, ČVUT, 1993. info
- Drdla, J. Metody modelování křivek a ploch v počítačové geometrii. Olomouc, UP, 1992. info
- Slavík, P. Metody zpracování grafické informace. Praha, ČVUT, 1992. info
- Poláček, J., Ježek, G., Kopincová, E. Počítačová grafika. Praha, 1991. info
- Heinz-Otto Leitgen, Peter H. Richter. The Beauty of Fractals. Springer, 1986. ISBN 9783540158516. info
- Drs, L. Plochy ve výpočetní technice. Praha, ČVUT, 1984. info
- Language of instruction
- English
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
- Teacher's information
- - 70% attendance in classes
- active participation in discussions
- critical essay of 2-3 pages debating a chosen text
- Enrolment Statistics (Winter 2021, recent)
- Permalink: https://is.slu.cz/course/fpf/winter2021/FPFVA034