FPF:UIINK62 Selected Topics in MA I - Course Information
UIINK62 Selected Topics in Mathematical Analysis I
Faculty of Philosophy and Science in OpavaWinter 2021
- Extent and Intensity
- 12/0/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Petra Nábělková, Ph.D. (lecturer)
Jan Tesarčík (lecturer)
Jan Tesarčík (seminar tutor) - Guaranteed by
- RNDr. Petra Nábělková, Ph.D.
Institute of Computer Science – Faculty of Philosophy and Science in Opava
Supplier department: Mathematical Institute in Opava - Timetable
- Fri 8. 10. 15:15–16:45 PED1, 16:55–18:25 PED1, Fri 15. 10. 11:25–12:55 B4, Fri 22. 10. 18:30–20:00 PED1, Fri 29. 10. 8:05–9:35 B4, Fri 12. 11. 16:55–18:25 B4
- Prerequisites
- Mathematical Analysis II
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives
- The course is intended to familiarize students with the basics of differential calculus of functions of several variables, taking into account the fact that the student composition requires focusing the subject matter as much as possible towards applications.
- Learning outcomes
- Students will be able to:
- define terms discussed in the course;
- determine partial derivative, free and bound extremum of simple functions of more variables;
- apply the acquired knowledge to practical examples; - Syllabus
- 1. The concept of the function of more variables
- 2. Limit and continuity of functions of two or more variables
- 3. Partial derivatives
- 4. Total differential
- 5. Taylor formula
- 6. Partial derivative of composite functions
- 7. Derivative in given direction
- 8. Implicit functions and their derivatives
- 9. Free extremum of functions of more variables
- 10. Constrained extremum of functions of more variables
- Literature
- required literature
- P. Kreml, J. Vlček. Matematika II. VŠB TU-Ostrava. ISBN 978-80-248-1316-5. info
- KUBEN, J., Š. MAYEROVÁ, P. RAŠKOVÁ, P. ŠARMANOVÁ. Diferenciální počet funkcí více proměnných. VŠB-TU, Ostrava a ZCU, Plzeň.
- Z. Došlá, O. Došlý. Diferenciální počet funkcí více proměnných. Masarykova univerzita v Brně, Brno, 1994. ISBN 80-210-2052-0. info
- recommended literature
- M. Jůza. Vybrané partie z matematické analýzy. MÚ SU, Opava, 1997. info
- Škrášek J., Tichý Z. Základy aplikované matematiky II. SNTL, Praha, 1986. info
- J. Stewart. Calculus. California, 1983. info
- V. Jarník. Diferenciální počet I. ČSAV, Praha, 1963. info
- V. Jarník. Diferenciální počet II. ČSAV, Praha, 1963. info
- Teaching methods
- Seminars, discussion
- Assessment methods
- Credit:
Obtaining the credit is conditioned by active participation in seminars (min. 75%), completion of partial tests to the sum of 60%.
Examination:
written and oral. - Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: Přednáška 12 HOD/SEM.
- Enrolment Statistics (Winter 2021, recent)
- Permalink: https://is.slu.cz/course/fpf/winter2021/UIINK62