UIINP51 Logic and Logic Programming

Faculty of Philosophy and Science in Opava
Winter 2022
Extent and Intensity
2/2/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
Mgr. Marek Menšík, Ph.D. (lecturer)
doc. RNDr. Lucie Ciencialová, Ph.D. (lecturer)
RNDr. Radka Poláková, Ph.D. (lecturer)
Mgr. Marek Menšík, Ph.D. (seminar tutor)
Guaranteed by
RNDr. Radka Poláková, Ph.D.
Institute of Computer Science – Faculty of Philosophy and Science in Opava
Contact Person: Mgr. Marek Menšík, Ph.D.
Timetable
Thu 7:15–8:50 B2
  • Timetable of Seminar Groups:
UIINP51/A: Thu 8:55–10:30 B3b, M. Menšík
Prerequisites
Introduction to Logic
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The course follows the course Introduction to Logic. We deal with several logic systems, the last one, Clause Axiomatic System, is used as a basis for logic programming. In the course, the students deal mainly with theoretical bases of logic programming, ie the basic idea, possibilities and procedures. We move from the procedures demonstrated in Clause Logic to programming in the Prolog programming language.
Learning outcomes
Students will be able to:
- use deduction and derivation in logical systems;
- describe the Clause axiomatic system;
- apply principles of logic programming to a simple practical problem;
Syllabus
  • 1. Conclusion and derivation of conclusion.
  • 2. Formal systems, axioms, derivation.
  • 3. Natural deduction system.
  • 4. Clause logic and clause axiomatic system.
  • 5. Logic programming in Prolog.
  • 6. Principles of logic programming.
Literature
    required literature
  • Marie Duží. Matematická logika. Skripta VŠB-TU v Ostravě. URL info
  • VAVREČKOVÁ, Šárka. Logika a logické programování: studijní text pro studenty doktorského studia. Slezská univerzita v Opavě.
    recommended literature
  • GALLIER, Jean H. Logic for computer science: foundations of automatic theorem proving. Second edition. Mineola, New York: Dover Publications, 2015. ISBN 978-0-486-78082-5. info
  • NIEVERGELT, Yves. Logic, mathematics, and computer science: modern foundationswith practical applications. Second edition. New York: Springer, 2015. ISBN 978-1-4939-3222-1. info
  • TRLIFAJOVÁ, Kateřina and Daniel VAŠATA. Matematická logika. Praha: České vysoké učení technické, 2013. ISBN 978-80-01-05342-3. info
  • BEN-ARI, M. Mathematical logic for computer science. Third edition. New York: Springer, 2012. ISBN 978-1-4471-4128-0. info
  • JIRKŮ, Petr and Jiřina VEJNAROVÁ. Formální logika: neformální výklad základů formální logiky. Vyd. 2. Praha: Oeconomica, 2005. ISBN 978-80-245-0974-7. info
  • LUKASOVÁ, A. Logické základy umělé inteligence, 2. formalizace a automatizace dedukce. Ostrava: Ostravská univerzita, 1997. info
  • Jirků, P. a kol. Programování v jazyku Prolog. SNTL Praha, 1991. info
Teaching methods
Interactive lectures
Tutorials
Assessment methods
Credit: compulsory attendance at seminars min. 75%, written and online test.
Exam: test.
Language of instruction
Czech
Further Comments
The course can also be completed outside the examination period.
The course is also listed under the following terms Winter 2019, Winter 2020, Winter 2021, Winter 2023, Winter 2024.
  • Enrolment Statistics (Winter 2022, recent)
  • Permalink: https://is.slu.cz/course/fpf/winter2022/UIINP51