UIIABP0004 Mathematics I

Faculty of Philosophy and Science in Opava
Winter 2023
Extent and Intensity
2/3/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Luděk Cienciala, Ph.D. (lecturer)
RNDr. Radka Poláková, Ph.D. (seminar tutor)
Guaranteed by
doc. RNDr. Luděk Cienciala, Ph.D.
Institute of Computer Science – Faculty of Philosophy and Science in Opava
Timetable
Mon 8:05–9:40 B1
  • Timetable of Seminar Groups:
UIIABP0004/A: Wed 15:35–18:00 B1, R. Poláková
Prerequisites
Mathematics in the range secondary school curriculum.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The aim of the course is to acquaint students with the basic concepts of mathematical analysis.
Learning outcomes
Students will be able to:
- define terms discussed in the course;
- analyze the basic functions;
- determine the limit or derivative of simple functions.
Syllabus
  • 1. The language of mathematics, an introduction to logic.
  • 2. Concept of function, basic properties of function, elementary functions, definitional domain of function, determination of basic properties of a function.
  • 3.-4. Graph of a function.
  • 5.-6. Limit and continuity of a function, limit of a sequence.
  • 7.-8. Differential calculus of a function of one real variable, derivatives, higher order derivatives, differential of a function. Application of derivative, l ́Hospital's rule, geometric meaning of derivative of a function at a point.
  • 9. The progression of a function.
  • 10.-11. Indefinite integral, methods of calculating the indefinite integral, integration by substitution, integration per partes method, integration of rational function, integration of irrational function, integration of goniometric functions, goniometric substitution.
  • 12.-13. Definite integral, geometric application of definite integral, content of a figure, volume of a rotating solid, length arc length of a plane curve, content of a rotating surface.
Literature
    recommended literature
  • Brožková, A. Cvičení z matematické analýzy II. pe. info
  • Cienciala, L., Ciencialová, L. Teorie grafů a grafové algoritmy. Slezská univerzita v Opavě, 2014. ISBN 978-80-7510-060-3. info
  • Došlá, Z., Kuben, J. Diferenciální počet funkcí jedné proměnné. Brno: MU, 2004. info
  • Míka, S., Drábek, P. Matematická analýza I. ZČU Plzeň, 2003. info
  • B. P. Děmidovič. Sbírka úloh a cvičení z matematické analýzy. Havlíčkův brod, 2003. info
  • DEVLIN, K. Jazyk matematiky. Praha: Argo, 2002. ISBN 80-7203-470-7. info
  • Švejdar, V. Logika: neúplnost, složitost a nutnost. Praha, Academia, 2002. info
  • Sochor, A. Klasická matematická logika. Praha, Univerzita Karlova, 2001. info
  • Štěpánek, P. Matematická logika. Prraha, Univerzita Karlova, 2000. info
  • Jirků, P., Vejnarová, V. Neformální výklad základů formální logiky. VŠE Praha, 2000. URL info
  • Lukasová, A.:. Logické základy umělé inteligence I. Ostrava, 1999. info
  • Černý, I., Rokyta, M. Differential and integral calculus of one real variable. Praha, Karolinum, 1998. info
  • Brožková, A. Cvičení z matematické analýzy I. Pedagogická fakulta Ostravské univerzity, 1995. info
  • Jarník V. Diferenciální počet. Academia Praha, 1975. info
Teaching methods
Interactive lecture
Lecture with a video analysis
Assessment methods
Exam
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
Teacher's information
Credit: full-time students wrote the exercises two credit tests scoring 30 points each. All five students solve homework. For each homework gets 8 points. To obtain the credit needed 50 points. Points earned during the semester is multiplied by 0.4 and rounded up. Normalized points are counted for the exam.
Exam: Students may receive a maximum of 60 points from the exam. The successful it is necessary to obtain 30 points. To determine the mark of the test points earned in a semester of credit tests and the exam added. Maximum points is 100
The course is also listed under the following terms Winter 2020, Winter 2021, Winter 2022, Winter 2024.
  • Enrolment Statistics (Winter 2023, recent)
  • Permalink: https://is.slu.cz/course/fpf/winter2023/UIIABP0004