MU:MU03135 Partial Differential Eq. II - Course Information
MU03135 Partial Differential Equations II
Mathematical Institute in OpavaWinter 2020
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Jana Kopfová, Ph.D. (lecturer)
RNDr. Petra Nábělková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Jana Kopfová, Ph.D.
Mathematical Institute in Opava - Timetable
- Mon 11:25–13:00 108
- Timetable of Seminar Groups:
- Prerequisites (in Czech)
- TYP_STUDIA(N)
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics (programme MU, N1101)
- Geometry and Global Analysis (programme MU, N1101)
- Mathematical Analysis (programme MU, N1101)
- Course objectives (in Czech)
- Prednáška je úvodom do modernej teórie PDR, teórie, ktorá sa zaoberá PDR pre ktoré klasické riešenia neexistujú ( pretože napríklad dáta úlohy nie sú hladké, alebo úlohu riešime na komplikovanej oblasti, alebo ide o úlohy nelineárnu).
- Syllabus
- 1.Elliptic equations. Potentials: volume potential, simple layer potential, double layer potential. Green formulas. Generalized Green formula. Harmonic functions: Dirichlet integral, Gauss integral theorem. Dirichlet problem and Neumann problem. Poisson formula
2.Elements of distribution theory. Test functions. Decomposition of the unity. Localization. Support. Regular and singular distributions. Operations over distributions. Convolution
Method of integral transforms. The Fourier transform. The Laplace transform
3.Modern methods of solving PDEs. Sobolev spaces. Generalized solutions. Lax-Milgram theorem
- 1.Elliptic equations. Potentials: volume potential, simple layer potential, double layer potential. Green formulas. Generalized Green formula. Harmonic functions: Dirichlet integral, Gauss integral theorem. Dirichlet problem and Neumann problem. Poisson formula
- Literature
- recommended literature
- V. I. Averbuch. Partial differential equations. MÚ SU, Opava. info
- J. Franců. Moderní metody řešení diferenciálních rovnic. Brno, 2002. info
- R. Strichartz. A guide to distribution theory and Fourier transforms. 1994. info
- M. Renardy, R. C. Rogers. An introduction to partial differential equations. New York, 1993. info
- C. Zuily. Problems in distributions and partial differential equations. 1988. info
- D. Gilbarg, N. S. Trudinger. Elliptic partial differential equations of second order. Second edition. Springer, Berlin, 1983. info
- L. Schwartz. Matematické metody ve fyzice. Státní nakladatelství technické literatury, Prah, 1972. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
- Enrolment Statistics (recent)
- Permalink: https://is.slu.cz/course/sumu/winter2020/MU03135