MU03250 Projective Geometry I

Mathematical Institute in Opava
Winter 2014
Extent and Intensity
2/0/0. 4 credit(s). Type of Completion: z (credit).
Guaranteed by
RNDr. Vladimír Sedlář, CSc.
Mathematical Institute in Opava
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives (in Czech)
Předmět slouží k seznámení se základy projektivní geometrie.
Syllabus
  • 1. Projective plane. Projective extension of the Euclidean plane. Double ratio. Papp theorem. Duality principle.
    2. Projectivity of one-parameter figures. Involution.
    3. Projective definition of conic section; projective generation of conics. Pascal and Brianchon theorems.
    4. Pole and polar, applications to constructions.
    5. Pencils and rows of conics.
    6. Focus properties of conics.
    7. Contructing conics from given elements.
    8. Central collineation. Collineation of a circle and a conic.
Literature
    recommended literature
  • J. Bureš, J. Burešová. Projektivní geometrie I. Praha. info
  • K. Havlíček. Úvod do projektivní geometrie kuželoseček. Praha, 1956. info
  • Kadeřábek, Klíma, Kounovský. Desriptivní geometrie L. Praha, 1954. info
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is also listed under the following terms Winter 1999, Winter 2000, Winter 2001, Winter 2002, Winter 2003, Winter 2004, Winter 2005, Winter 2006, Winter 2007, Winter 2008, Winter 2009, Winter 2010, Winter 2011, Winter 2012, Winter 2013, Winter 2015, Winter 2016, Winter 2017, Winter 2018, Winter 2019, Winter 2023.
  • Enrolment Statistics (Winter 2014, recent)
  • Permalink: https://is.slu.cz/course/sumu/winter2014/MU03250