FPF:UIDI004 Teorie a aplikace UNS - Informace o předmětu
UIDI004 Teorie a aplikace umělých neuronových sítí
Filozoficko-přírodovědecká fakulta v Opavěléto 2022
- Rozsah
- 0/0/0. 0 kr. Ukončení: dzk.
- Garance
- prof. Ing. Dušan Marček, CSc.
Ústav informatiky – Filozoficko-přírodovědecká fakulta v Opavě - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Autonomní systémy (program FPF, P1801 Inf) (2)
- Autonomous Systems (program FPF, P1801 Inf) (2)
- Cíle předmětu
- Předmět seznamuje s aktuálními trendy, problémy a pokroky v oblasti teorie a aplikací umělých neuronových sítí a zahrne i metody teorie učení pro identifikaci nelineárních chaotických systémů, vývoj učících algoritmů sítí na predikci ekonomických procesů založených na jiných než statistických kriteriích (minimalizace chyby predikce), třeba na požadovaných účelových kritériích např. požadovaných (maximalizovaných) výnosů při uplatnení specifických obchodních, finančních, a investičních stratégií s aplikací modifikovaných učících SVM (Support Vector Machines) technik a aplikace rekurentních UNS. Dále se uvede do problematiky výzkumu a aplikací klasifikátorů, kvantizátorů a prediktorů založených na neurovýpočtech s komplementárnou podporou matematické statistiky a teorie fuzzy množin, na algoritmizaci a predikci technických a ekonomických procesů, na transformace, kompresy a přenos dat a pod. Odborná literatura: 1. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge, 2000 2. Goonatilake, S., Treleaven, P.: Inteligent Systems for Finance and Businnes. John Wiley & Sons, Chishester, UK, 1995 3. Kosko, B.: Neural Network and Fuzzy Systems. Prentice-Hall, Englewood Cliffs, NJ, 1992 4. Kvasnička, V., Beňušková, Ľ., Pospíchal, J., Tiňo, P., Farkaš, I.: Úvod do teórie neurónových sietí, IRIS, Bratislava 1989. 5. Vapnik, V.: Statistical Learning Theory. John Wiley, New York, 1998
- Literatura
- doporučená literatura
- Haykin, S. Kalman Filtering and Neural Networks. NY: John Wiley and Sons, 2002. info
- Kecman, V. Learning and Soft Computing, Support Vector Machines, Neural Networks, and Fuzzy Logic Models. Massachusetts Institute of Technology, The MIT P, 2001. info
- Hassoun, M.H. Fundamentals ofArtificial Neural Networks. The MIT Press, Cambridge, Messachusetts,London, 1994. info
- Hertz, J.; Krogh, A.; Palmer, R., G. Introduction to the Theory of Neural Computation. Addison-esley, 1991. info
- Výukové metody
- Přednáška s aktivizací
Přednáška s analýzou videozáznamu - Metody hodnocení
- Zkouška
- Informace učitele
- Teoretické a praktické zvládnutí témat předmětu, podmínky budou upřesněny na začátku výuky.
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (nejnovější)
- Permalink: https://is.slu.cz/predmet/fpf/leto2022/UIDI004