FPF:UIN1004 Teorie grafů - Informace o předmětu
UIN1004 Teorie grafů I
Filozoficko-přírodovědecká fakulta v Opavězima 2015
- Rozsah
- 2/2/0. 6 kr. Ukončení: zk.
- Vyučující
- doc. RNDr. Luděk Cienciala, Ph.D. (přednášející)
doc. RNDr. Luděk Cienciala, Ph.D. (cvičící)
Mgr. Jan Drastik, Ph.D. (cvičící)
Mgr. Martina Foldynová (cvičící)
Mgr. Adam Kožaný (cvičící)
Mgr. Marek Menšík, Ph.D. (cvičící)
RNDr. Michal Perdek (cvičící) - Garance
- doc. RNDr. Luděk Cienciala, Ph.D.
Ústav informatiky – Filozoficko-přírodovědecká fakulta v Opavě - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- V daném předmětu se studenti seznámí se základními pojmy, s důkazovými technikami a možnými aplikacemi teorie grafů.
- Osnova
- 1. Grafy a jednoduché grafy, stupeň vrcholu.
2. Podgrafy, reprezentace grafů pomocí matic, cesty, cykly, dosažitelnost, souvislost, souvislé, nesouvislé grafy, vzdálenost v grafu, excentricita vrcholu, průměr a poloměr grafu.
3. Stromy, třídy grafů.
4. Další třídy grafů - kompletní grafy, bipartitní a multi-partitní grafy, izomorfismus, automorfismus. Vrcholová a hranová souvislost, bloky.
5. Párování, pokrytí, hranové barvení grafů, párování a pokrytí v bipartitních grafech, algoritmus hledající nesaturované alternující cesty.
6. Vrcholové barvení grafů, planární grafy.
7. Problém 4 barev, Neplanární grafy, Eulerovské grafy, Úlohy typu bludiště - Tarryho algoritmus, Trémauxův algoritmus.
8. Hamiltonovské grafy, orientované grafy.
9. Orientované grafy, turnaje, sítě, toky a řezy.
10. Algoritmus nalezení minimální kostry grafu, Primův algoritmus, Kruskalův, Obecné schéma prohledávání grafu - značkování vrcholů.
11. Prohledávání grafů do šířky, do hloubky, Backtracking.
- 1. Grafy a jednoduché grafy, stupeň vrcholu.
- Literatura
- doporučená literatura
- Fronček, D. Úvod do teorie grafů. Opava, FPF SU, 2000. info
- Bollobas, B. Modern Graph Theory. New York, Springer, 1998. info
- Diestel, R. Graph Theory. New York, Springer, 1997. info
- Demel, J. Grafy. Praha, SNTL, 1988. info
- Kolář, J. Grafy. Praha, ČVUT, 1984. info
- Kolář, J. Grafy - cvičení. Praha, ČVUT, 1984. info
- Bosák, J. Grafy a ich aplikácie. Bratislava, Alfa, 1980. info
- Behzad, M., Chartrand, G. Graphs and Digraphs. Weber, Schmidt, 1979. info
- Bondy, J. A. Graph Theory with Applications. The Macmillan Press, 1976. info
- Výukové metody
- Přednáška s aktivizací
Přednáška s analýzou videozáznamu - Metody hodnocení
- Zkouška
- Informace učitele
- Student prezenčního studia píše v rámci cvičení dva zápočtové testy bodované maximálně 20 body za každý. K získání zápočtu je zapotřebí 20 bodů. V rámci semestru mohou studenti získat prémiové body.
Zkouška se skládá ze dvou částí. První část: jednoduchý test obsahující 10 otázek. K úspěšnému zvládnutí testu je potřeba alespoň 7-krát zodpovědět správně. Pouze studenti úspěšní v tomto testu mohou obdržet zadání druhé části. Druhá část se skládá z pěti otázek, každá je bodována maximálně 10 body. K počtu bodů získaných ve druhé části se studentovi připočítává 10 bodů z části první. Celkem je tedy ze zkouškové písemky možno získat 60 bodů. Pro úspěšné vykonání je potřeba získat 30 bodů. Známka je stanovena součtem bodů za zkoušku a bodů, které student získal v rámci semestru.
Hodnocení
Prezenční studium Kombinované studium
A 100 - 91 60 - 55
B 90 - 81 54 - 49
C 80 - 71 48 - 43
D 70 - 61 42 - 37
E 60 - 50 36 - 30
F 49 - 0 29 - 0 - Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (zima 2015, nejnovější)
- Permalink: https://is.slu.cz/predmet/fpf/zima2015/UIN1004