## INMBASTA Statistics

Obchodně podnikatelská fakulta v Karviné
léto 2024
Rozsah
2/1/0. 6 kr. Ukončení: zk.
Vyučující
Mgr. Jiří Mazurek, Ph.D. (přednášející)
Garance
doc. RNDr. David Bartl, Ph.D.
Kontaktní osoba: Mgr. Radmila Krkošková, Ph.D.
FAKULTA ( OPF ) && TYP_STUDIA ( B ) && FORMA ( P )
Omezení zápisu do předmětu
Předmět je určen pouze studentům mateřských oborů.
Mateřské obory/plány
Osnova
• 1. Introduction: statistics and the significance of statistics
When the statistics are not reliable. Statistical methods is marketing, business and entrepreneurship. Applications of statistical methods: descriptive statistics, statistical induction, statistical decision making and inference.
2. Descriptive statistics: categorical and numerical data
Categorical (qualitative) data. Frequency distribution. Numerical (qualitative) data. Frequency distribution, statistical location (arithmetic mean, median, mode), statistical variability or dispersion (variance and standard deviation), shape of the distribution (skewness, kurtosis).
3. Probability and random variables
Intuitive definition of the probability and fundamental concepts. Combinatorics. Bernoulli trials. Probability as the relative frequency. Probability properties. Discrete and continuous random variable. The probability distribution of a random variable and its characteristics (expected value, variance and standard deviation, mode).
4. Probability models (discrete and continuous)
Discrete probability models, discrete random variables, their characteristics and charts: uniform distribution, binomial distribution, Poisson distribution. Continuous probability models, continuous random variables, their characteristics and charts: uniform distribution, Gauss normal distribution, exponential distribution, Student's t-distribution. Probability cumulative distribution function and the quantile function. Probability density function. Central limit theorem.
5. Point and interval estimation
Sample data, point estimates, properties of point estimates. Interval estimates, confidence interval for the mean value.
6. Statistical hypothesis testing and analysis of variance.
Parametric statistical tests. Statistical hypothesis, null hypothesis (H0), alternative hypothesis (H1). Hypothesis testing for a mean. Single-sided tests. Two-sided tests. Non-parametric statistical tests. The chi-squared distribution. Pearson's chi-squared test. Statistical tests of independence in 2x2 contingency table. Analysis of variance (ANOVA), single factor or one-way ANOVA, coefficient of determination and correlation ratio.
7. Linear regression and regression analysis
Stochastic dependence. Simple linear regression. Multiple linear regression. Other linear models. The choice of the regression function, regression parameters estimation, coefficient of determination and correlation ratio, linearized regression functions.
Vyučovací jazyk
Angličtina
Předmět je zařazen také v obdobích léto 2015, léto 2016, léto 2017, léto 2018, léto 2019, zima 2021, léto 2022.