OPF:INMNASDP Statistical Data Processing - Informace o předmětu
INMNASDP Statistical Data Processing
Obchodně podnikatelská fakulta v Karvinézima 2022
- Rozsah
- 2/1/0. 6 kr. Ukončení: zk.
- Vyučující
- doc. RNDr. David Bartl, Ph.D. (přednášející)
- Garance
- doc. RNDr. David Bartl, Ph.D.
Katedra informatiky a matematiky – Obchodně podnikatelská fakulta v Karviné
Kontaktní osoba: Mgr. Radmila Krkošková, Ph.D. - Předpoklady
- FAKULTA(OPF) && TYP_STUDIA(N) && FORMA(P)
- Omezení zápisu do předmětu
- Předmět je určen pouze studentům mateřských oborů.
- Osnova
- 1. Introduction
Elementary statistical concepts: random experiment, sample space, event space, random variable. Population and sample characteristics (mean value, variance). Point and interval estimates, hypothesis testing.
2. Analysis of variance (ANOVA)
Basic principles of experimental design. Single factor or one-way ANOVA, assumptions, Bartlett's test for the equality of variances. Two-way ANOVA without and with replication. Three-way ANOVA – Latin squares. Kruskal-Wallis non-parametric ANOVA.
3. Linear regression and regression analysis
Simple and multiple linear regression. The classical assumptions for the linear regression. Test of hypotheses for the parameters and confidence intervals. The coefficient of determination. Problems in regression analysis: multicollinearity and its causation; heteroscedasticity (Park test, Bartlett's test) and fixes for it; autocorrelation (sign test). Non-linear regression, basic types of non-linear regression, Törnquist curves and their applications in economics.
4. Dummy variables
ANOVA model with one qualitative variable and the corresponding regression model with dummy variables. A regression with a mixture of quantitative and qualitative variables (analysis of covariance, ANCOVA).
5. Time series analysis
Types and elementary characteristics of economic time series. Decomposition of time series: trend, cyclical, seasonal, and random component. Analytical methods to determine the trend of the time series: least squares method, maximum likelihood method. Synthetic methods: moving averages, exponential smoothing. Analysis of the cyclical and seasonal component. Analysis of the random component (Durbin-Watson test for autocorrelation).
6. Box-Jenkins methodology
Stochastic process. The autocorrelation function (ACF) and the partial autocorrelation function (PACF). Autoregressive (AR) and moving average (MA) process. Autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA), and seasonal autoregressive integrated moving average (SARIMA) process. Box-Jenkins model identification. Forecasting in linear regression, ARIMA and SARIMA models.
- 1. Introduction
- Vyučovací jazyk
- Angličtina
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (zima 2022, nejnovější)
- Permalink: https://is.slu.cz/predmet/opf/zima2022/INMNASDP