OPF:INMNKSTZ Statistické zpracování dat - Informace o předmětu
INMNKSTZ Statistické zpracování dat
Obchodně podnikatelská fakulta v Karvinézima 2024
- Rozsah
- 12/0/0. Přednáška 12 HOD/SEM. 5 kr. Ukončení: zk.
- Vyučující
- Mgr. Radmila Krkošková, Ph.D. (přednášející)
- Garance
- doc. RNDr. David Bartl, Ph.D.
Katedra informatiky a matematiky – Obchodně podnikatelská fakulta v Karviné
Kontaktní osoba: Mgr. Radmila Krkošková, Ph.D. - Rozvrh
- So 19. 10. 8:05–9:40 VS, So 9. 11. 8:05–9:40 VS, So 30. 11. 8:05–9:40 VS
- Předpoklady
- FAKULTA(OPF) && TYP_STUDIA(N) && FORMA(K)
- Omezení zápisu do předmětu
- Předmět je určen pouze studentům mateřských oborů.
Předmět si smí zapsat nejvýše 250 stud.
Momentální stav registrace a zápisu: zapsáno: 173/250, pouze zareg.: 0/250 - Mateřské obory/plány
- Bankovnictví, peněžnictví, pojišťovnictví (program OPF, N_BPP)
- Finance, účetnictví a daně (program OPF, N_EM)
- Manažerská informatika (program OPF, N_MI)
- Obchod a marketing (program OPF, N_EM)
- Podnikání (program OPF, N_EM)
- Veřejná ekonomika a správa (program OPF, N_VES)
- Cíle předmětu
- V návaznosti na předmět Statistika z bakalářského stupně studia, nebo jiný základní bakalářský statistický předmět, poskytnout výklad dalších pojmů matematické statistiky, hlavních poznatků této teorie a základních statistických a ekonometrických metod. Látku prezentovat s ohledem na aplikace v ekonomické oblasti. Získat příslušné manuální výpočetní dovednosti a naučit se řešit statistické úlohy pomocí Excelu a SPSS na počítači.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- statisticky zpracovat data metodou jednoduché / vícenásobné lineární regrese;
- provést jednoduchou nelineární regresi;
- provést statistický test vlivu faktoru na očekávanou hodnotu veličiny metodou jednofaktorové analýzy rozptylu (ANOVA);
- provést statistický test vlivu faktoru na očekávanou hodnotu veličiny a statistický test existence interakce mezi faktory metodou dvoufaktorové analýzy rozptylu (ANOVA);
- provést analýzu a predikovat vývoj časové řady. - Osnova
- 1. Analýza rozptylu – Jeden faktor
Nezávislý a závislý faktor, předpoklady analýzy rozptylu s jedním faktorem. Míra těsnosti závislosti, determinační a korelační poměr. - 2. Analýza rozptylu – Dva a více faktorů
Analýza rozptylu se dvěma faktory. Předpoklady ANOVA se 2 faktory. Dvoufaktorová ANOVA bez interakce a s interakcí. Kruskal-Wallisova neparametrická ANOVA. - 3. Regresní analýza – Jednorozměrná lineární regrese
Co je regresní analýza - jednoduchá, vícenásobná, lineární, nelineární. Podstata jednoduché lineární regresní analýzy - bodový diagram, regresní přímka, regresní koeficienty, přiléhavost, koeficient determinace, testy hypotéz, intervaly spolehlivosti. Jednoduchá nelineární regresní analýza - základní typy nelinearity, Törnqvistovy křivky a jejich aplikace v ekonomii. - 4. Regresní analýza - Vícerozměrná
Vícenásobná lineární regresní analýza – předpoklady, regresní nadrovina, koeficient determinace. Aplikace na příkladech z ekonomické oblasti (marketingový výzkum). Klasický vícerozměrný lineární regresní model. Multikolinearita a její příčiny. Heteroskedasticita, testy H-S (Parkův test, Bartleyův test) a její odstraňování. Autokorelace (znaménkový test). - 5. Analýza časových řad
Typy ekonomických časových řad. Elementární charakteristiky časových řad. Modely ekonomických časových řad – dekompoziční metoda, exponenciálního vyrovnání, ARIMA modely. Analytické metody stanovení trendů časových řad: regresní analýza (MNČ – metoda nejmenších čtverců, MMV – metoda maximální věrohodnosti). Syntetické metody: klouzavé průměry, exponenciální vyrovnání. Analýza sezónní složky: modely konstantní sezónnosti se schodovitým trendem, s lineárním trendem. Modely proporcionální sezónnosti. Analýza náhodné složky: statistické testy náhodné složky pomocí reziduí. - 6. Modely typu ARIMA a prognózování časových řad
Stochastický proces a jeho stacionarita. Základy modelů ARIMA: modely AR, MA, I, ARIMA. Identifikace ARIMA modelu pomoci autokorelační funkce (ACF) a parciální autokorelační funkce (PACF). Výpočet koeficientů modelu ARIMA, verifikace modelu, predikce v modelu ARIMA.
- 1. Analýza rozptylu – Jeden faktor
- Literatura
- povinná literatura
- RAMÍK, Jaroslav a Radmila KRKOŠKOVÁ. Statistické zpracování dat: Pro kombinovanou formu studia. Karviná: Slezská univerzita v Opavě, Obchodně podnikatelská fakulta v Karviné, 2013, 162 s. ISBN 978-80-7248-842-1. Výsledek v databázi "Databáze výstupů projektů Operačního programu Vzdělávání pro konkurenceschopnost" info
- doporučená literatura
- GUJARATI, Damodar N. Essentials of Econometrics. Fifth Edition. Sage Publications, 2023. ISBN 978-1-0718-5039-8. info
- BRASE, Charles Henry, Corrinne Pellillo BRASE, Jason Mark DOLOR a James Allen SEIBERT. Understandable Statistics: Concepts and Methods. 13th Edition. Cengage, 2022. ISBN 978-0-357-71917-6. info
- HYNDMAN, Rob J. a George ATHANASOPOULOS. Forecasting: Principles and Practice. OTexts, 2021. ISBN 978-0-9875071-3-6. URL info
- ANDERSON, David, Dennis J. SWEENEY, Thomas WILLIAMS, Jeffrey D. CAMM, James J. COCHRAN, Michael J. FRY a Jeffrey W. OHLMANN. Essentials of Modern Business Statistics with Microsoft® Excel®. 8th Edition. Cengage, 2020. ISBN 978-0-357-56952-8. info
- ANDERSON, David, Dennis J. SWEENEY, Thomas A. WILLIAMS, Jeffrey D. CAMM, James J. COCHRAN, James FREEMAN a Eddie SHOESMITH. Statistics for Business and Economics. 5th Edition. Cengage, 2020. ISBN 978-1-4737-6845-1. info
- KELLER, Gerald a Nicoleta GACIU. Statistics for Management and Economics. 2nd Edition. Cengage, 2019. ISBN 978-1-4737-6826-0. info
- HINDLS, Richard, Markéta ARLTOVÁ, Stanislava HRONOVÁ, Ivana MALÁ, Luboš MAREK, Iva PECÁKOVÁ a Hana ŘEZANKOVÁ. Statistika v ekonomii. [Průhonice]: Professional Publishing, 2018, 395 s. ISBN 978-80-88260-09-7. info
- SEDLAČÍK, M., J. NEUBAUER a O. KŘÍŽ. Základy statistiky. 2. vyd. Praha: Grada, 2016. ISBN 978-80-247-5786-5. info
- WALKER, Ian. Výzkumné metody a statistika. Praha: Grada, 2013. ISBN 978-80-247-3920-5. info
- BUDÍKOVÁ, Marie, Maria KRÁLOVÁ a Bohumil MAROŠ. Průvodce základními statistickými metodami. První vydání. Praha: Grada, 2010. ISBN 978-80-247-3243-5. info
- GIBILISCO, Stan. Statistika bez předchozích znalostí. Brno: Computer Press, 2009, 272 s. ISBN 978-80-251-2465-9. info
- RAMÍK, J. a Š. ČEMERKOVÁ. Statistika A. Karviná: SU OPF, 2000. ISBN 80-85879-43-3. info
- RAMÍK, R. a Š. ČEMERKOVÁ. Statistika B. Karviná: SU OPF, 2000. ISBN 80-7248-001-4. info
- CYHELSKÝ, L., J. KAHOUNOVÁ a R. HINDLS. Elementární statistická analýza. Praha: Management Press, 1996. ISBN 80-7261-003-1. info
- SEGER, J. a R. HINDLS. Statistické metody v tržním hospodářství. Praha: Victoria Publishing, 1995. ISBN 80-7187-058-7. info
- ZVÁRA, Karel. Regresní analýza. Praha: Academia, 1989. ISBN 80-200-0125-5. info
- Výukové metody
- 3 tutoriály po 4 hod. a samostudium (řešení vybraných příkladů vztahujících se k probírané látce)
- Metody hodnocení
- hodnocení: závěrečný písemný test (možno používat Excel)
- Informace učitele
- Během semestru se konají 3 soustředění po 4 hod. Studenti kombinovaného studia mají rozšířené možnosti konzultovat učivo s vyučující předmětu.
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (nejnovější)
- Permalink: https://is.slu.cz/predmet/opf/zima2024/INMNKSTZ