MU:MU01136 Numerical Methods - Course Information
MU01136 Numerical Methods
Mathematical Institute in OpavaSummer 2022
- Extent and Intensity
- 2/0/0. 4 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Petra Nábělková, Ph.D. (lecturer)
- Guaranteed by
- RNDr. Petra Nábělková, Ph.D.
Mathematical Institute in Opava - Timetable
- Tue 13:05–14:40 R2
- Prerequisites (in Czech)
- MU01002 Mathematical Analysis II && NOW( MU01936 Numerical Methods - Exercises ) && ! MU10136 Numerical Methods && !NOW( MU10136 Numerical Methods ) && TYP_STUDIA(B)
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics (programme MU, B1101)
- Mathematics (programme MU, B1101)
- Course objectives (in Czech)
- Cílem výuky tohoto předmětu je seznámit studenty se základními numerickými přístupy k řešení problémů, se kterými se již dříve setkali v matematické analýze a algebře.
- Syllabus
- 1. Numerical representation: representation of numbers, origin and classification of errors, errors of arithmetic operations, conditionality of tasks and numerical stability of algorithms.
2. Interpolation: Algebraic polynomial interpolation-existence and uniqueness of polynomial interpolation, estimation of interpolation error, Lagrange, Newton and Hermit interpolating polynomials, interpolation on equidistant nodes. Spline interpolation.
3. Approximation: choosing the class of approximating functions, least squares method.
4. Numerical solution of nonlinear equations: roots separation, simple iteration method, bisection method, tangent method, secant methods, regula falsi.
5. Numerical solution of systems of equations: Gauss elimination with control column, LU-decomposition, Jacobi method, Gauss-Seidel method.
6. Numerical integration: Newton-Cotes quadrature formulas, error estimates.
- 1. Numerical representation: representation of numbers, origin and classification of errors, errors of arithmetic operations, conditionality of tasks and numerical stability of algorithms.
- Literature
- recommended literature
- I. Horová. Numerické metody. Masarykova univerzita v Brně, Brno, 1999. ISBN 80-210-2202-7. info
- J. Segethová. Základy numerické matematiky. Karolinum, Praha, 1998. ISBN 80-7184-596-5. info
- VITÁSEK, E. Numerické metody. SNTL, Praha, 1987. info
- Z. Riečanová a kol. Numerické metody a matematická štatistika. Alfa, Bratislava, 1987. ISBN 063-559-87. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
- Enrolment Statistics (recent)
- Permalink: https://is.slu.cz/course/sumu/summer2022/MU01136