MU:MU02036 Math. Methods in Phys. Eng II - Course Information
MU02036 Mathematical Methods in Physics and Engineering II
Mathematical Institute in OpavaSummer 2023
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Oldřich Stolín, Ph.D. (lecturer)
RNDr. Petr Blaschke, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Oldřich Stolín, Ph.D.
Mathematical Institute in Opava - Timetable
- Wed 11:25–13:00 110
- Timetable of Seminar Groups:
- Prerequisites (in Czech)
- ( MU02034 Math. Methods in Phys. Eng. I || MU02035 Math. Methods in Physic Eng. I ) && TYP_STUDIA(BN)
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics (programme MU, B1101)
- Applied Mathematics (programme MU, N1101)
- Mathematical Methods and Modelling (programme MU, Bc-M)
- General Mathematics (programme MU, Bc-M)
- Mathematics (programme MU, B1101)
- Course objectives (in Czech)
- Student dokáže teoreticky popsat a prakticky používat základní matematické metody řešení fyzikálních a technických úloh.
- Syllabus
- 1. variational calculus; variational functionals, lagrangian mechanics, Lagrange multipliers.
2. Function spaces; norms, inner products, operators, distributions.
3. Linear ordinary differential equations; existence and uniqueness of solutions, normal form, non-homegeneity, singularity.
4. Linear differential operators; formal operator and its extensions, adjoint operator, completeness of eigenfunctions.
5.Green's functions; nonhomogeneous linear differential equations, construction of Green's functions, use of the Lagrange identity, eigen-function expansion, analytic properties, Gelfand-Dikii equation.
6. Linear partial differential equations; classification of second order equations, Cauchy conditions, wave equations, heat equation, Laplace equation.
7. The mathematics of waves, waves in dispersive media, creation of waves, nonlinear waves, solitons.
8. Special functions; curvilinear coordinate systems, spheric harmonics, Bessel functions, Weyl theorem.
9. Dynamical systems; autonomous and nonautonomous systems, their relationship and best known special cases.
10. One-dimensional digital filters; Nyiquist teorém, Heisenberg relations, linear and nonlinear examples.
11. Linear integral equations; classification, integral transforms, separable kernels, singular equations.
- 1. variational calculus; variational functionals, lagrangian mechanics, Lagrange multipliers.
- Literature
- required literature
- Stone M. Mathematics for Physics I. Alexandria, Pimander-Casaubon, 2002. info
- recommended literature
- Smékal Z., Vich R. Číslicové filtry. Praha, Academia, 2000. info
- Pierre N. V. Dynamical Systems. Berlin, Springer, 1994. info
- Dettman, J. W. Matematické metody ve fyzice a technice. Academia, Praha, 1970. info
- not specified
- J. Segethová. Základy numerické matematiky. Karolinum, Praha, 1998. ISBN 80-7184-596-5. info
- VITÁSEK, E. Numerické metody. SNTL, Praha, 1987. info
- Z. Riečanová a kol. Numerické metody a matematická štatistika. Alfa, Bratislava, 1987. ISBN 063-559-87. info
- K. Rektorys a spolupracovníci. Přehled užité matematiky. SNTL, Praha, 1968. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period.
- Enrolment Statistics (recent)
- Permalink: https://is.slu.cz/course/sumu/summer2023/MU02036