MU:MU25009 Chapters in Differential Geom. - Course Information
MU25009 Chapters in Differential Geometry
Mathematical Institute in OpavaSummer 2013
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Guaranteed by
- doc. RNDr. Michal Marvan, CSc.
Mathematical Institute in Opava - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Geometry and Global Analysis (programme MU, N1101)
- Course objectives (in Czech)
- V tomto předmětu budou probrány další partie klasické i moderní diferenciální geometrie, ve kterých by měl absolvent navazujícího magisterského studia diferenciální geometrie dosáhnout základní orientace. Obsah může reflektovat zájmy posluchačů.
- Syllabus (in Czech)
- 1. Nadplochy v Eukleidovském prostoru: Druhá fundamentální forma, Gaussovy-Weingartenovy rovnice, Gaussovy-Mainardiho-Codazziho rovnice, Bonnetův teorém, normální řezy, hlavní křivosti, hlavní souřadnice, střední a Gaussova křivost, theorema egregium, kongruence normál, fokální nadplochy, Gaussovo zobrazení, třetí fundamentální forma.
2. Minimální plochy, pseudosférické plochy, modely Lobačevského geometrie.
3. Komplexní variety, komplexní struktura na reálné varietě, komplexní diferenciální formy, holomorfní formy, Kählerovy variety, Calabiho-Yauovy variety, použití v teorii strun.
4. Základy teorie eliptických křivek a eliptických funkcí.
5. Kontaktní struktura, nelineární parciální diferenciální rovnice prvního řádu a její řešení.
- 1. Nadplochy v Eukleidovském prostoru: Druhá fundamentální forma, Gaussovy-Weingartenovy rovnice, Gaussovy-Mainardiho-Codazziho rovnice, Bonnetův teorém, normální řezy, hlavní křivosti, hlavní souřadnice, střední a Gaussova křivost, theorema egregium, kongruence normál, fokální nadplochy, Gaussovo zobrazení, třetí fundamentální forma.
- Literature
- recommended literature
- S. P. Novikov, I. A. Taimanov. Modern Geometric Structures and Fields. Amer. Math. Soc., 2006. info
- A. M. Vinogradov, I. S. Krasilshchik. Symmetries And Conservation Laws for Differential Equations in Mathematical Physics. Amer. Math. Soc., 1999. info
- V. V. Prasolov, Yu. P. Solovev. Elliptic Functions and Elliptic Integrals. Amer. Math. Soc., 1997. info
- Language of instruction
- English
- Further Comments
- The course can also be completed outside the examination period.
- Enrolment Statistics (Summer 2013, recent)
- Permalink: https://is.slu.cz/course/sumu/summer2013/MU25009