MU:MU25009 Chapters in Differential Geom. - Course Information
MU25009 Chapters in Differential Geometry
Mathematical Institute in OpavaSummer 2014
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Guaranteed by
- doc. RNDr. Michal Marvan, CSc.
Mathematical Institute in Opava - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Geometry and Global Analysis (programme MU, N1101)
- Course objectives (in Czech)
- V tomto předmětu budou probrány další partie klasické i moderní diferenciální geometrie, ve kterých by měl absolvent navazujícího magisterského studia diferenciální geometrie dosáhnout základní orientace. Obsah může reflektovat zájmy posluchačů.
- Syllabus
- 1. Hypersurfaces in Euclidean spaces: second fundamental form, Gauss-Weingarten equations, Gauss-Mainardi-Codazzi equations, Bonnet's theorem, normal sections, principal curvatures, principal coordinates, mean and Gaussian curvature, theorema egregium, normal congruences, focal hypersurfaces, Gauss map, third fundamental form.
2. Minimal surfaces, pseudospheric surfaces, models of Lobachevsky geometry.
3. Complex manifolds, complex structures on a real manifold, complex differential forms, holomorphic forms, Kaehler manifolds, Calabi-Yau manifolds, applications in string theory.
4. Basic theory of elliptic curves and elliptic functions.
5. Contact structures, a nonlinear partial differential equation of first order and its solution.
- 1. Hypersurfaces in Euclidean spaces: second fundamental form, Gauss-Weingarten equations, Gauss-Mainardi-Codazzi equations, Bonnet's theorem, normal sections, principal curvatures, principal coordinates, mean and Gaussian curvature, theorema egregium, normal congruences, focal hypersurfaces, Gauss map, third fundamental form.
- Literature
- recommended literature
- S. P. Novikov, I. A. Taimanov. Modern Geometric Structures and Fields. Amer. Math. Soc., 2006. info
- A. M. Vinogradov, I. S. Krasilshchik. Symmetries And Conservation Laws for Differential Equations in Mathematical Physics. Amer. Math. Soc., 1999. info
- V. V. Prasolov, Yu. P. Solovev. Elliptic Functions and Elliptic Integrals. Amer. Math. Soc., 1997. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
- Enrolment Statistics (Summer 2014, recent)
- Permalink: https://is.slu.cz/course/sumu/summer2014/MU25009