MUDGGA Geometrie a globální analýza

Matematický ústav v Opavě
léto 2015
Rozsah
0/0. 0 kr. Ukončení: -.
Garance
doc. RNDr. Michal Marvan, CSc.
Matematický ústav v Opavě
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Ověřit, zda student získal znalosti a dovednosti potřebné pro samostatnou vědeckou práci.
Osnova
  • 1. Základy analýzy na varietách:
    Algebra hladkých funkcí. Vektorová a tenzorová pole, Lieova závorka, integrabilní distribuce. Vnější formy, integrování na varietách, Stokesova věta. Tok vektorového pole, Lieova derivace. Základy teorie Lieových grup a Lieových algeber. De Rhamovy kohomologie. Základy Riemannovy geometrie. Prostory jetů. Základy variačního počtu.
    2. Teorie Lieových grup a algeber:
    Lieovy grupy a podgrupy, Lieovy algebry, jejich ideály. Reprezentace Lieových grup a algeber, G-moduly a g-moduly, jejich souvislosti. Nilpotentní, řešitelné a polojednoduché algebry. Základy strukturní teorie jednoduchých algeber a jejich reprezentací, váhy a kořeny. Příklady v komplexním i reálném oboru, klasické série.
    3. Homologická algebra:
    Moduly, řetězcové komplexy, exaktnost, rezolventy a derivované funktory, Tor a Ext. Bikomplexy, spektrální posloupnosti. Homologie a kohomologie některých algebraických struktur.
    4. Algebraická topologie:
    Metoda algebraické topologie. Singulární homologie a kohomologie, buněčné komplexy a jejich (ko)homologie. Homotopie a homotopické grupy, nakrytí a univerzální nakrytí. Zobecněné homologické a kohomologické teorie, spektrální posloupnosti. Svazky, abstraktní de Rhamova věta.
    5. Riemannova geometrie:
    Diferenciální geometrie vnořené podvariety v euklidovském prostoru, základní formy a rovnice. Variety s afinní konexí, geodetiky, tenzor křivosti a torze. Riemannova metrika, metrická konexe, základní identity. Prosty konstantní křivosti. Gaussova-Bonnetova formule.
    6. Aplikace diferenciální geometrie v matematické fyzice:
    Geometrické základy obecné teorie relativity. Symplektické variety, Poissonovy variety, Hamiltonův formalismus, Liouvilleova věta, proměnné akce - úhel. Variační počet, Eulerovy--Lagrangeovy rovnice, invariance a pohybové integrály, věta Noetherové.
    7. Geometrická teorie diferenciálních rovnic:
    Prostory jetů, Cartanova distribuce, formální integrabilita. Bodové, kontaktní a vyšší symetrie, Lieova algebra symetrií. Zákony zachování, horizontální kohomologie. Nakrytí, nelokální symetrie a zákony zachování, Bäcklundovy transformace, reprezentace nulové křivosti. Operátory rekurze, Hamiltonovy struktury, úplná integrabilita.
    Student zvolí tři z těchto sedmi okruhů podle svého zaměření. Oborová komise může na návrh školitele uvedenou nabídku rozšířit.
    Součástí státní doktorské zkoušky je také obhajoba disertační práce.
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 2009, léto 2010, zima 2010, léto 2011, zima 2011, léto 2012, zima 2012, léto 2013, zima 2013, léto 2014, zima 2014, zima 2015, léto 2016, zima 2016, léto 2017, zima 2017, léto 2018, zima 2018, léto 2019.