MU:MU03039 Diferenciální geometrie II - Informace o předmětu
MU03039 Diferenciální geometrie II
Matematický ústav v Opavěléto 2021
- Rozsah
- 4/2/0. 8 kr. Ukončení: zk.
- Vyučující
- prof. RNDr. Artur Sergyeyev, Ph.D., DSc. (přednášející)
Mgr. Jakub Vašíček (cvičící) - Garance
- prof. RNDr. Artur Sergyeyev, Ph.D., DSc.
Matematický ústav v Opavě - Rozvrh
- Út 16:25–18:00 R1, Čt 18:05–19:40 R1
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- MU03038 Diferenciální geometrie I && TYP_STUDIA(BN)
MU/03038 - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Geometrie a globální analýza (program MU, NMgr-M)
- Geometrie a globální analýza (program MU, N1101)
- Matematická analýza (program MU, N1101)
- Obecná matematika (program MU, B1101)
- Cíle předmětu
- Diferenciální geometrie je část geometrie, která využívá ke studiu křivek, (hyper)ploch a obecněji tzv. variet metody diferenciálního počtu. Diferenciální geometrie se při studiu geometrických útvarů zaměřuje na tzv. invariantní vlastnosti, které nezávisí na volbě soustavy souřadnic a zabývá se především lokálními vlastnostmi geometrických útvarů, tedy vlastnostmi týkajících se dostatečně malých částí těchto útvarů. Cílem předmětu je seznámení studentů se základy diferenciální geometrie. V tomto předmětu, který je pokračováním předmětu Diferenciální geometrie I se budeme věnovat především tensorovému počtu na varietách a Lieovym grupám.
- Osnova
- Diferenciální formy -- pokračování (orientovatelnost, integrování na varietách, Stokesova věta a jají důsledky).
Tenzorová pole na varietách a jejich vlastnosti (definice, operace nad tenzory, mj. symetrizace, antisymetrizace, tenzorové násobení, Lieova derivace)
Afinní konexe a související otázky (tenzor torze, tenzor křivosti, paralelní přenos vektorů, geodetiky, kovariantní derivace, geometrický význam tenzorů křivosti a torze)
Variety s metrickým polem ((pseudo)Riemannovy variety, Levi-Civitova konexe, tenzor křivosti, Ricciho tenzor, skalární křivost, izometrie a Killingova rovnice, integrování na varietě s metrickým polem, Levi-Civitův (pseudo)tenzor, objemový element, základní představa o Hodgeově dualitě).
Základy teorie Lieovych grup (definice Lieovy grupy, pravo- a levoinvariantní vektorová pole a diferenciální formy a jejich vlastnosti, Lieova algebra a její vztah k Lieově grupě)
- Diferenciální formy -- pokračování (orientovatelnost, integrování na varietách, Stokesova věta a jají důsledky).
- Literatura
- povinná literatura
- P. Krtouš. Geometrické metody ve fyzice. Praha, 2013. URL info
- John M. Lee. Introduction to Smooth Manifolds. 2006. info
- C. Isham. Modern Differential Geometry for Physicists. Singapore, 1999. info
- O. Kowalski. Úvod do Riemannovy geometrie. Univerzita Karlova, Praha, 1995. info
- doporučená literatura
- S. Caroll. Lecture Notes on General Relativity. URL info
- D. Krupka. Matematické základy OTR. info
- M. Fecko. Diferenciálna geometria a Lieove grupy pre fyzikov. Bratislava, Iris, 2004. info
- M. Wisser. Math 464: Notes on Differential Geometry. 2004. URL info
- B. A. Dubrovin, A. T. Fomenko, S. P. Novikov. Modern Geometry - Methods and Applications, Parts I and II,. Springer-Verlag, 1984. info
- F. Warner. Foundations of differentiable manifolds and Lie groups. Springer-Verlag, N.Y.-Berlin, 1971. info
- M. Spivak. Calculus on Manifolds. 1965. info
- Informace učitele
- Účast na přednáškách je žádoucí. Přednášející během první přednášky sdělí studentům své požadavky ohledně podmínek úspěšného absolvování předmětu. K udělení zápočtu je zapotřebí získat alespoň 60 procent bodů ze zápočtových písemek (zpravidla jsou to dvě písemky během semestru) nebo 70 procent bodů z opravné zápočtové písemky. Přesné podmínky a data konání písemek stanovuje cvičící. Zkouška je ústní. Na ní se prověřují odborné znalosti a dovednosti studentů získané během studia daného předmětu. Získání zápočtu je předpokladem pro připouštění ke zkoušce.
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (nejnovější)
- Permalink: https://is.slu.cz/predmet/sumu/leto2021/MU03039