MU:MU02028 Funkcionální anal. a optim. I - Informace o předmětu
MU02028 Funkcionální analýza a optimalizace I
Matematický ústav v Opavězima 2010
- Rozsah
- 2/2/0. 6 kr. Ukončení: z.
- Vyučující
- Vladimír Averbuch, DrSc. (přednášející)
doc. RNDr. Michal Málek, Ph.D. (cvičící) - Garance
- Vladimír Averbuch, DrSc.
Matematický ústav v Opavě - Předpoklady
- MU00004 && MU00006 Uživatelská práce na PC
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika (program MU, B1101)
- Geometrie (program MU, M1101)
- Matematická analýza (program MU, M1101)
- Obecná matematika (program MU, B1101)
- Cíle předmětu
- Hlavní pozornost v první části základního kurzu funkcionální analýzy je věnována topologickým vektorovým prostorům, tj. prostorům opatřeným kompatibilní algebraickou a topologickou strukturou, lineárním zobrazením těchto prostorů a třem základním principům funkcionální analýzy, kterými jsou Hahnova - Banachova věta, princip otevřenosti a princip ohraničenosti.
- Osnova
- 1. Topologické vektorové prostory (zachovávání algebraických vlastností topologickými operacemi, vlastnosti okolí nuly v topologickém vektorovém prostoru, spojité lineární zobrazení topologických vektorových prostorů).
2. Hahnova-Banachova věta (konvexní množiny, konvexní funkce, Jensenová nerovnost, sublinearní funkce, funkce Minkowského, Hahnova-Banachova věta, lokálně-konvexní prostory, polonormy, lokalně-konvexní topologie generovaná polonormami, věta o striktním oddělení (strict separation theorem)).
3. Princip otevřenosti (Fréchetovy prostory, Banachova věta pro otevřená zobrazení, Banachova věta pro inverzní zobrazení, věta o uzavřeném grafu).
4. Princip ohraničenosti (ohraničené množiny, ohraničené zobrazení, stejnoměrná spojitost, stejnoměrná ohraničenost a bodová ohraničenost, Banachova-Steinhausova věta).
- 1. Topologické vektorové prostory (zachovávání algebraických vlastností topologickými operacemi, vlastnosti okolí nuly v topologickém vektorovém prostoru, spojité lineární zobrazení topologických vektorových prostorů).
- Literatura
- Informace učitele
- K udělení zápočtu je požadována aktivní účast na cvičeních. Každý student rovněž musí během semestru vyřešit alespoň dva z průběžně zadávaných problémů a toto řešení následně na cvičení úspěšně prezentovat.
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (zima 2010, nejnovější)
- Permalink: https://is.slu.cz/predmet/sumu/zima2010/MU02028