MU:MUNMF1 SZZk NMgr. MF Analýza na var. - Informace o předmětu
MUNMF1 Analýza na varietách
Matematický ústav v Opavězima 2013
- Rozsah
- 0/0. 0 kr. Ukončení: -.
- Garance
- prof. RNDr. Artur Sergyeyev, Ph.D., DSc.
Matematický ústav v Opavě - Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- Ověřit, zda student úspěšně zvládl studovaný obor a získal znalosti a dovednosti potřebné pro případné další studium nebo praxi.
- Osnova
- 1. Analýza na varietách
- Topologická struktura na množině (otevřené a uzavřené množiny, vnitřek, vnějšek, hranice, báze topologie), spojitá zobrazení, homeomorfismy, konstrukce topologických prostorů (podprostory, součiny, faktorové prostory).
- Metrické prostory (metrika, metrická topologie, úplné metrické prostory, stejnoměrně spojitá zobrazení, kontrakce, věta o pevném bodě, izometrie, Hausdorffova věta o zúplnění metrického prostoru), konvergence v topologických prostorech (konvergence v prostorech 1. typu spočetnosti, konvergence v metrických prostorech).
- Kompaktní a lokálně kompaktní topologické prostory, Parakompaktní prostory, topologické variety.
- Grupy, akce grup, okruhy a moduly.
- Lineární konexe (tenzor, torze, tenzor křivosti, paralelní přenos vektorů, geodetiky, kovariantní derivace, geometrický význam tenzoru křivosti).
- Variety s metrickým polem (Riemannovy a hyperbolické variety, Levi-Civitova konexe, tenzor křivosti, Ricciho tenzor, skalární křivost, Riemannova křivost, izometrie a Killingova rovnice, integrování funkcí na varietě s metrickým polem).
- Lieovy grupy, hlavní a asociované prostory (homomorfismy, Lieova algebra, Lieovy grupy, akce grup, fibrovaný prostor bází).
- Vnoření a vložení variet, submerze, Whitneyho věty.
- Kritické body zobrazení, Sardova věta.
- Vektorová pole, lokální a globální tok.
- Vektorové distribuce, Frobeniova věta.
- Základní úloha variačního počtu (Lagrangeova funkce, variační funkcionál, variace, Eulerovy-Lagrangeovy rovnice, příklady).
- Symetrie variačních problémů (transformace invariance a zobecněné invariance, generátory grup invariance, kriteria invariance, první věta Emmy Noetherové).
- Regulární variační úlohy (podmínka regularity, Legendrova transformace, Hamiltonovy rovnice).
- 1. Analýza na varietách
- Literatura
- doporučená literatura
- S. Sternberg. Lectures on Differential Geometry. AMS Chelsea Publishing, Providence, Rhode Island, 1995. info
- O. Kowalski. Úvod do Riemannovy geometrie. Univerzita Karlova, Praha, 1995. info
- D. Krupka, O. Krupková. Topologie a geometrie, 1. Obecná topologie. SPN, Praha, 1989. info
- N. J. Bloch. Abstract Algebra with Applications. Englewood Clifs, 1987. ISBN 0130009857. info
- D. Krupka. Úvod do analýzy na varietách. SPN, Praha, 1986. info
- J. R. Munkres. Topology, A First Course. Prentice Hall, New Jersey, 1975. info
- R. Narasimhan. Analysis on real and complex manifolds. North-Holland Publishing Company, Amsterdam, 1968. info
- A. G. Kuroš. Kapitoly z obecné algebry. Academia Praha, 1968. info
- I. M. Gel'fand, S. V. Fomin. Variacionnoe isčislenie. Gosudarstvennoe izdatel'stvo fiziko-matematičesk, 1961. info
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (zima 2013, nejnovější)
- Permalink: https://is.slu.cz/predmet/sumu/zima2013/MUNMF1