J 2017

Quasinormal modes of Gauss-Bonnet-AdS black holes: towards holographic description of finite coupling

KONOPLYA, Roman a Alexander ZHIDENKO

Základní údaje

Originální název

Quasinormal modes of Gauss-Bonnet-AdS black holes: towards holographic description of finite coupling

Autoři

KONOPLYA, Roman (804 Ukrajina, garant, domácí) a Alexander ZHIDENKO (804 Ukrajina)

Vydání

Journal of High Energy Physics, New York, SPRINGER, 2017, 1029-8479

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Kód RIV

RIV/47813059:19240/17:A0000052

Organizační jednotka

Filozoficko-přírodovědecká fakulta v Opavě

UT WoS

000412097500004

Klíčová slova anglicky

black holes; gauge-gravity correspondence; black holes in string theory; classical theories of gravity

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 6. 4. 2018 18:54, RNDr. Jan Hladík, Ph.D.

Anotace

V originále

Here we shall show that there is no other instability for the Einstein-Gauss-Bonnet-anti-de Sitter (AdS) black holes, than the eikonal one and consider the features of the quasinormal spectrum in the stability sector in detail. The obtained quasinormal spectrum consists from the two essentially different types of modes: perturbative and non-perturbative in the Gauss-Bonnet coupling alpha. The sound and hydrodynamic modes of the perturbative branch can be expressed through their Schwazrschild-AdS limits by adding a linear in alpha correction to the damping rates: omega approximate to Re omega_(SAdS) - Im omega_(SAdS) (1 - alpha ((D + 1)(D - 4)/2R^(2)))i, where R is the AdS radius. The non-perturbative branch of modes consists of purely imaginary modes, whose damping rates unboundedly increase when alpha goes to zero. When the black hole radius is much larger than the anti-de Sitter radius R, the regime of the black hole with planar horizon (black brane) is reproduced. If the Gauss-Bonnet coupling alpha (or used in holography lambda_(GB)) is not small enough, then the black holes and branes suffer from the instability, so that the holographic interpretation of perturbation of such black holes becomes questionable, as, for example, the claimed viscosity bound violation in the higher derivative gravity. For example, D = 5 black brane is unstable at vertical bar lambda_(GB)vertical bar > 1/8 and has anomalously large relaxation time when approaching the threshold of instability.