2017
Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity
CREMASCHINI, Claudio a Massimo TESSAROTTOZákladní údaje
Originální název
Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity
Autoři
CREMASCHINI, Claudio (380 Itálie, domácí) a Massimo TESSAROTTO (380 Itálie, domácí)
Vydání
Entropy, 2017, 1099-4300
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.305
Kód RIV
RIV/47813059:19240/17:A0000014
Organizační jednotka
Filozoficko-přírodovědecká fakulta v Opavě
UT WoS
000406701500049
Klíčová slova anglicky
covariant quantum gravity; Hamilton-Jacobi quantization; quantum-wave equation; quantum hydrodynamic equations; Heisenberg inequalities
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GB14-37086G, projekt VaV. GP14-07753P, projekt VaV.
Změněno: 4. 4. 2018 15:33, RNDr. Jan Hladík, Ph.D.
Anotace
V originále
Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and Tessarotto 2015-2017) are investigated. These refer, first, to the establishment of the four-scalar, manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity (CQG) wave equation, which advances the quantum state psi associated with a prescribed background space-time. In this paper, the CQG-wave equation is proved to follow at once by means of a Hamilton-Jacobi quantization of the classical variational tensor field g equivalent to {g_(mu nu)} and its conjugate momentum, referred to as (canonical) g-quantization. The same equation is also shown to be variational and to follow from a synchronous variational principle identified here with the quantum Hamilton variational principle. The corresponding quantum hydrodynamic equations are then obtained upon introducing the Madelung representation for psi, which provides an equivalent statistical interpretation of the CQG-wave equation. Finally, the quantum state y is proven to fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum observables. These are shown to be represented in terms of the standard deviations of the metric tensor g equivalent to {g_(mu nu)} and its quantum conjugate momentum operator.