J 2017

Hamiltonian approach to GR - Part 1: covariant theory of classical gravity

CREMASCHINI, Claudio a Massimo TESSAROTTO

Základní údaje

Originální název

Hamiltonian approach to GR - Part 1: covariant theory of classical gravity

Autoři

CREMASCHINI, Claudio (380 Itálie, domácí) a Massimo TESSAROTTO (380 Itálie, domácí)

Vydání

European Physical Journal C, 2017, 1434-6044

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 5.172

Kód RIV

RIV/47813059:19240/17:A0000016

Organizační jednotka

Filozoficko-přírodovědecká fakulta v Opavě

UT WoS

000401899900001

Klíčová slova anglicky

Hamilton-Jacobi theory; Eintein equations; classical gravity; variational principle

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GB14-37086G, projekt VaV. GP14-07753P, projekt VaV.
Změněno: 5. 4. 2018 14:20, RNDr. Jan Hladík, Ph.D.

Anotace

V originále

A challenging issue in General Relativity concerns the determination of the manifestly covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor (g) over cap (r) equivalent to {(g) over cap _(mu nu) (r)} solution of the Einstein field equations which determines the geometry of the background spacetime and suitable variational fields x equivalent to {g, pi} obeying an appropriate set of continuum Hamilton equations, referred to here as GR-Hamilton equations. It is shown that a prerequisite for reaching such a goal is that of casting the same equations in evolutionary form by means of a Lagrangian parametrization for a suitably reduced canonical state. As a result, the corresponding Hamilton-Jacobi theory is established in manifestly covariant form. Physical implications of the theory are discussed. These include the investigation of the structural stability of the GR-Hamilton equations with respect to vacuum solutions of the Einstein equations, assuming that wave-like perturbations are governed by the canonical evolution equations.