2017
			
	    
	
	
    Curvature dependence of relativistic epicyclic frequencies in static, axially symmetric spacetimes
VIEIRA, Ronaldo Savioli Sumé; Włodek KLUŹNIAK a Marek ABRAMOWICZZákladní údaje
Originální název
Curvature dependence of relativistic epicyclic frequencies in static, axially symmetric spacetimes
	Autoři
VIEIRA, Ronaldo Savioli Sumé (76 Brazílie, domácí); Włodek KLUŹNIAK (616 Polsko, domácí) a Marek ABRAMOWICZ (616 Polsko, domácí)
			Vydání
 Physical Review D, 2017, 2470-0010
			Další údaje
Jazyk
angličtina
		Typ výsledku
Článek v odborném periodiku
		Obor
10308 Astronomy
		Stát vydavatele
Spojené státy
		Utajení
není předmětem státního či obchodního tajemství
		Odkazy
Impakt faktor
Impact factor: 4.394
			Kód RIV
RIV/47813059:19240/17:A0000059
		Organizační jednotka
Filozoficko-přírodovědecká fakulta v Opavě
			UT WoS
000393512400005
		EID Scopus
2-s2.0-85021878771
		Klíčová slova anglicky
epicyclic frequencies; circular orbits; geodesic motion
		Příznaky
Mezinárodní význam, Recenzováno
		
				
				Změněno: 5. 4. 2018 15:42, RNDr. Jan Hladík, Ph.D.
				
		Anotace
V originále
The sum of squared epicyclic frequencies of nearly circular motion (omega^(2)_(r) + omega^(2)_(theta)) in axially symmetric configurations of Newtonian gravity is known to depend both on the matter density and on the angular velocity profile of circular orbits. It was recently found that this sum goes to zero at the photon orbits of Schwarzschild and Kerr spacetimes. However, these are the only relativistic configurations for which such a result exists in the literature. Here, we extend the above formalism in order to describe the analogous relation for geodesic motion in arbitrary static, axially symmetric, asymptotically flat solutions of general relativity. The sum of squared epicyclic frequencies is found to vanish at photon radii of vacuum solutions. In the presence of matter, we obtain that omega^(2)_(r) + omega^(2)_(theta) > 0 for perturbed timelike circular geodesics on the equatorial plane if the strong energy condition holds for the matter-energy fluid of spacetime; in vacuum, the allowed region for timelike circular geodesic motion is characterized by the inequality above. The results presented here may be of use to shed light on general issues concerning the stability of circular orbits once they approach photon radii, mainly the ones corresponding to stable photon motion.