J 2017

Curvature dependence of relativistic epicyclic frequencies in static, axially symmetric spacetimes

VIEIRA, Ronaldo Savioli Sumé, Włodek KLUŹNIAK a Marek ABRAMOWICZ

Základní údaje

Originální název

Curvature dependence of relativistic epicyclic frequencies in static, axially symmetric spacetimes

Autoři

VIEIRA, Ronaldo Savioli Sumé (76 Brazílie, domácí), Włodek KLUŹNIAK (616 Polsko, domácí) a Marek ABRAMOWICZ (616 Polsko, domácí)

Vydání

Physical Review D, 2017, 2470-0010

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Kód RIV

RIV/47813059:19240/17:A0000059

Organizační jednotka

Filozoficko-přírodovědecká fakulta v Opavě

UT WoS

000393512400005

Klíčová slova anglicky

epicyclic frequencies; circular orbits; geodesic motion

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 5. 4. 2018 15:42, RNDr. Jan Hladík, Ph.D.

Anotace

V originále

The sum of squared epicyclic frequencies of nearly circular motion (omega^(2)_(r) + omega^(2)_(theta)) in axially symmetric configurations of Newtonian gravity is known to depend both on the matter density and on the angular velocity profile of circular orbits. It was recently found that this sum goes to zero at the photon orbits of Schwarzschild and Kerr spacetimes. However, these are the only relativistic configurations for which such a result exists in the literature. Here, we extend the above formalism in order to describe the analogous relation for geodesic motion in arbitrary static, axially symmetric, asymptotically flat solutions of general relativity. The sum of squared epicyclic frequencies is found to vanish at photon radii of vacuum solutions. In the presence of matter, we obtain that omega^(2)_(r) + omega^(2)_(theta) > 0 for perturbed timelike circular geodesics on the equatorial plane if the strong energy condition holds for the matter-energy fluid of spacetime; in vacuum, the allowed region for timelike circular geodesic motion is characterized by the inequality above. The results presented here may be of use to shed light on general issues concerning the stability of circular orbits once they approach photon radii, mainly the ones corresponding to stable photon motion.