J 2020

Enhanced group classification of nonlinear diffusion-reaction equations with gradient-dependent diffusivity

POPOVYCH, Roman, Stanislav OPANASENKO a Vyacheslav BOYKO

Základní údaje

Originální název

Enhanced group classification of nonlinear diffusion-reaction equations with gradient-dependent diffusivity

Autoři

POPOVYCH, Roman (804 Ukrajina, domácí), Stanislav OPANASENKO (804 Ukrajina, garant) a Vyacheslav BOYKO (804 Ukrajina)

Vydání

Journal of Mathematical Analysis and Applications, San Diego (USA), Academic Press Inc. Elsevier Science, 2020, 0022-247X

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Kód RIV

RIV/47813059:19610/20:A0000072

Organizační jednotka

Matematický ústav v Opavě

UT WoS

000508488800012

Klíčová slova anglicky

Group classification of differential equations; Method of furcate splitting; Diffusion-reaction equations; Lie symmetry; Equivalence group; Lie reduction

Štítky

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

EF16_027/0008521, projekt VaV.
Změněno: 6. 4. 2021 07:01, Mgr. Aleš Ryšavý

Anotace

V originále

We carry out the enhanced group classification of a class of (1+1)-dimensional nonlinear diffusion-reaction equations with gradient-dependent diffusivity using the two-step version of the method of furcate splitting. For simultaneously finding the equivalence groups of an unnormalized class of differential equations and a collection of its subclasses, we suggest an optimized version of the direct method. The optimization includes the preliminary study of admissible transformations within the entire class and the successive splitting of the corresponding determining equations with respect to arbitrary elements and their derivatives depending on auxiliary constraints associated with each of required subclasses. In the course of applying the suggested technique to subclasses of the class under consideration, we construct, for the first time, a nontrivial example of finite-dimensional effective generalized equivalence group. Using the method of Lie reduction and the generalized separation of variables, exact solutions of some equations under consideration are found.