J 2021

Penrose Process: Its Variants and Astrophysical Applications

STUCHLÍK, Zdeněk, Martin KOLOŠ a Arman TURSUNOV

Základní údaje

Originální název

Penrose Process: Its Variants and Astrophysical Applications

Autoři

STUCHLÍK, Zdeněk (203 Česká republika, domácí), Martin KOLOŠ (203 Česká republika, domácí) a Arman TURSUNOV (860 Uzbekistán, domácí)

Vydání

Universe, Switzerland, 2021, 2218-1997

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19630/21:A0000109

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

000724852200001

Klíčová slova anglicky

rotating black holes;accretion disks;magnetic fields;ultra-high energy particles

Štítky

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GA19-03950S, projekt VaV.
Změněno: 7. 2. 2022 14:35, Mgr. Pavlína Jalůvková

Anotace

V originále

We present a review of the Penrose process and its modifications in relation to the Kerr black holes and naked singularities (superspinars). We introduce the standard variant of this process, its magnetic version connected with magnetized Kerr black holes or naked singularities, the electric variant related to electrically charged Schwarzschild black holes, and the radiative Penrose process connected with charged particles radiating in the ergosphere of magnetized Kerr black holes or naked singularities. We discuss the astrophysical implications of the variants of the Penrose process, concentrating attention to the extreme regime of the magnetic Penrose process leading to extremely large acceleration of charged particles up to ultra-high energy E & SIM;1022 eV around magnetized supermassive black holes with mass M & SIM;1010M & ODOT; and magnetic intensity B & SIM;104 G. Similarly high energies can be obtained by the electric Penrose process. The extraordinary case is represented by the radiative Penrose process that can occur only around magnetized Kerr spacetimes but just inside their ergosphere, in contrast to the magnetic Penrose process that can occur in a more extended effective ergosphere determined by the intensity of the electromagnetic interaction. The explanation is simple, as the radiative Penrose process is closely related to radiated photons with negative energy whose existence is limited just to the ergosphere.