2021
Penrose Process: Its Variants and Astrophysical Applications
STUCHLÍK, Zdeněk, Martin KOLOŠ a Arman TURSUNOVZákladní údaje
Originální název
Penrose Process: Its Variants and Astrophysical Applications
Autoři
STUCHLÍK, Zdeněk (203 Česká republika, domácí), Martin KOLOŠ (203 Česká republika, domácí) a Arman TURSUNOV (860 Uzbekistán, domácí)
Vydání
Universe, Switzerland, 2021, 2218-1997
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19630/21:A0000109
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
000724852200001
Klíčová slova anglicky
rotating black holes;accretion disks;magnetic fields;ultra-high energy particles
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GA19-03950S, projekt VaV.
Změněno: 7. 2. 2022 14:35, Mgr. Pavlína Jalůvková
Anotace
V originále
We present a review of the Penrose process and its modifications in relation to the Kerr black holes and naked singularities (superspinars). We introduce the standard variant of this process, its magnetic version connected with magnetized Kerr black holes or naked singularities, the electric variant related to electrically charged Schwarzschild black holes, and the radiative Penrose process connected with charged particles radiating in the ergosphere of magnetized Kerr black holes or naked singularities. We discuss the astrophysical implications of the variants of the Penrose process, concentrating attention to the extreme regime of the magnetic Penrose process leading to extremely large acceleration of charged particles up to ultra-high energy E & SIM;1022 eV around magnetized supermassive black holes with mass M & SIM;1010M & ODOT; and magnetic intensity B & SIM;104 G. Similarly high energies can be obtained by the electric Penrose process. The extraordinary case is represented by the radiative Penrose process that can occur only around magnetized Kerr spacetimes but just inside their ergosphere, in contrast to the magnetic Penrose process that can occur in a more extended effective ergosphere determined by the intensity of the electromagnetic interaction. The explanation is simple, as the radiative Penrose process is closely related to radiated photons with negative energy whose existence is limited just to the ergosphere.