2021
Aspects of GRMHD in high-energy astrophysics: geometrically thick disks and tori agglomerates around spinning black holes
PUGLIESE, Daniela a G. MONTANIZákladní údaje
Originální název
Aspects of GRMHD in high-energy astrophysics: geometrically thick disks and tori agglomerates around spinning black holes
Autoři
PUGLIESE, Daniela (380 Itálie, domácí) a G. MONTANI
Vydání
General Relativity and Gravitation, US - Spojené státy americké, 2021, 0001-7701
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19630/21:A0000159
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
000645909200001
Klíčová slova anglicky
Accretion disks;Accretion;Black hole physics;Hydrodynamics
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 3. 2022 08:24, Mgr. Pavlína Jalůvková
Anotace
V originále
This work focuses on some key aspects of the general relativistic (GR)-magneto-hydrodynamic (MHD) applications in high-energy astrophysics. We discuss the relevance of the GRHD counterparts formulation exploring the geometrically thick disk models and constraints of the GRMHD shaping the physics of accreting configurations. Models of clusters of tori orbiting a central super-massive black hole (SMBH) are described. These orbiting tori aggregates form sets of geometrically thick, pressure supported, perfect fluid tori, associated to complex instability processes including tori collision emergence and empowering a wide range of activities related expectantly to the embedding matter environment of Active Galaxy Nuclei. Some notes are included on aggregates combined with proto-jets, represented by open cusped solutions associated to the geometrically thick tori. This exploration of some key concepts of the GRMHD formulation in its applications to High-Energy Astrophysics starts with the discussion of the initial data problem for a most general Einstein-Euler-Maxwell system addressing the problem with a relativistic geometric background. The system is then set in quasi linear hyperbolic form, and the reduction procedure is argumented. Then, considerations follow on the analysis of the stability problem for self-gravitating systems with determined symmetries considering the perturbations also of the geometry part on the quasi linear hyperbolic onset. Thus we focus on the ideal GRMHD and self-gravitating plasma ball. We conclude with the models of geometrically thick GRHD disks gravitating around a Kerr SMBH in their GRHD formulation and including in the force balance equation of the disks the influence of a toroidal magnetic field, determining its impact in tori topology and stability.