J 2021

Physical Properties of Schwarzschild-deSitter Event Horizon Induced by Stochastic Quantum Gravity

CREMASCHINI, Claudio a Massimo TESSAROTTO

Základní údaje

Originální název

Physical Properties of Schwarzschild-deSitter Event Horizon Induced by Stochastic Quantum Gravity

Autoři

CREMASCHINI, Claudio (380 Itálie, domácí) a Massimo TESSAROTTO (380 Itálie, domácí)

Vydání

Entropy, 2021, 1099-4300

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19630/21:A0000160

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

000653908800001

Klíčová slova anglicky

covariant quantum gravity;cosmological constant;Schwarzschild-deSitter space-time;event horizon;stochastic effects;tunneling phenomena

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 15. 3. 2022 13:59, Mgr. Pavlína Jalůvková

Anotace

V originále

A new type of quantum correction to the structure of classical black holes is investigated. This concerns the physics of event horizons induced by the occurrence of stochastic quantum gravitational fields. The theoretical framework is provided by the theory of manifestly covariant quantum gravity and the related prediction of an exclusively quantum-produced stochastic cosmological constant. The specific example case of the Schwarzschild-deSitter geometry is looked at, analyzing the consequent stochastic modifications of the Einstein field equations. It is proved that, in such a setting, the black hole event horizon no longer identifies a classical (i.e., deterministic) two-dimensional surface. On the contrary, it acquires a quantum stochastic character, giving rise to a frame-dependent transition region of radial width delta r between internal and external subdomains. It is found that: (a) the radial size of the stochastic region depends parametrically on the central mass M of the black hole, scaling as delta r similar to M3; (b) for supermassive black holes delta r is typically orders of magnitude larger than the Planck length lP. Instead, for typical stellar-mass black holes, delta r may drop well below lP. The outcome provides new insight into the quantum properties of black holes, with implications for the physics of quantum tunneling phenomena expected to arise across stochastic event horizons.