2021
Physical Properties of Schwarzschild-deSitter Event Horizon Induced by Stochastic Quantum Gravity
CREMASCHINI, Claudio a Massimo TESSAROTTOZákladní údaje
Originální název
Physical Properties of Schwarzschild-deSitter Event Horizon Induced by Stochastic Quantum Gravity
Autoři
CREMASCHINI, Claudio (380 Itálie, domácí) a Massimo TESSAROTTO (380 Itálie, domácí)
Vydání
Entropy, 2021, 1099-4300
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19630/21:A0000160
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
000653908800001
Klíčová slova anglicky
covariant quantum gravity;cosmological constant;Schwarzschild-deSitter space-time;event horizon;stochastic effects;tunneling phenomena
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 15. 3. 2022 13:59, Mgr. Pavlína Jalůvková
Anotace
V originále
A new type of quantum correction to the structure of classical black holes is investigated. This concerns the physics of event horizons induced by the occurrence of stochastic quantum gravitational fields. The theoretical framework is provided by the theory of manifestly covariant quantum gravity and the related prediction of an exclusively quantum-produced stochastic cosmological constant. The specific example case of the Schwarzschild-deSitter geometry is looked at, analyzing the consequent stochastic modifications of the Einstein field equations. It is proved that, in such a setting, the black hole event horizon no longer identifies a classical (i.e., deterministic) two-dimensional surface. On the contrary, it acquires a quantum stochastic character, giving rise to a frame-dependent transition region of radial width delta r between internal and external subdomains. It is found that: (a) the radial size of the stochastic region depends parametrically on the central mass M of the black hole, scaling as delta r similar to M3; (b) for supermassive black holes delta r is typically orders of magnitude larger than the Planck length lP. Instead, for typical stellar-mass black holes, delta r may drop well below lP. The outcome provides new insight into the quantum properties of black holes, with implications for the physics of quantum tunneling phenomena expected to arise across stochastic event horizons.