J 2021

Parameter-dependent linear ordinary differential equations and topology of domains

POPOVYCH, Roman, Vyacheslav M. BOYKO and Michael KUNZINGER

Basic information

Original name

Parameter-dependent linear ordinary differential equations and topology of domains

Authors

POPOVYCH, Roman (804 Ukraine, belonging to the institution), Vyacheslav M. BOYKO (804 Ukraine) and Michael KUNZINGER (40 Austria, guarantor)

Edition

Journal of Differential Equations, San DIego (USA), Academic Press Inc. Elsevier Science, 2021, 0022-0396

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

RIV identification code

RIV/47813059:19610/21:A0000105

Organization unit

Mathematical Institute in Opava

UT WoS

000634823300017

Keywords in English

Parameter-dependent linear ODE; Fundamental set of solutions; Wronskian; Distributional solutions

Tags

Tags

International impact, Reviewed

Links

EF16_027/0008521, research and development project.
Změněno: 29/4/2022 12:55, Mgr. Aleš Ryšavý

Abstract

V originále

The well-known solution theory for (systems of) linear ordinary differential equations undergoes significant changes when introducing an additional real parameter. Properties like the existence of fundamental sets of solutions or characterizations of such sets via nonvanishing Wronskians are sensitive to the topological properties of the underlying domain of the independent variable and the parameter. We give a complete characterization of the solvability of such parameter-dependent equations and systems in terms of topological properties of the domain. In addition, we also investigate this problem in the setting of Schwartz distributions.