J 2022

Bankruptcy problem under uncertainty of claims and estate

RAMÍK, Jaroslav a Milan VLACH

Základní údaje

Originální název

Bankruptcy problem under uncertainty of claims and estate

Název česky

Problem bankrotu v podmínkách neurčitostí nároků a podstaty

Název anglicky

Bankruptcy problem under uncertainty of claims and estate

Autoři

RAMÍK, Jaroslav a Milan VLACH

Vydání

Fuzzy Sets and Systems, 2022

Další údaje

Jazyk

čeština

Typ výsledku

Článek v odborném periodiku

Obor

10102 Applied mathematics

Stát vydavatele

Česká republika

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Organizační jednotka

Obchodně podnikatelská fakulta v Karviné

Klíčová slova česky

Bankruptcy problem; Division scheme; Intervalové funkce; Intervalové požadavky; Neurčitá jistinaestate

Klíčová slova anglicky

Bankruptcy problem; Division scheme; Interval valued functions; Interval claims; Fuzzy interval claims; Uncertain estate

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GA21-03085S, projekt VaV.
Změněno: 20. 12. 2022 16:51, prof. RNDr. Jaroslav Ramík, CSc.

Anotace

V originále

In this paper we focus on real situations where certain perfectly divisible estate has to be divided among claimants who can merely indicate the range of their claims, and the available amount is smaller than the aggregated claim. Funds’ allocation of a firm among its divisions, taxation problems, priority problems, distribution of costs of a joint project among the agents involved, various disputes including those generated by inheritance, or by cooperation in joint projects based on restricted willingness to pay, fit into this framework. The corresponding claim of each claimant can vary within a closed interval or fuzzy interval. For claims, fuzzy intervals are applied whenever the claimants can distinguish a possibility of attaining the amount of estate, and/or its membership degree of a possibility of attainment. When claims of claimants have fuzzy interval uncertainty, we settle such type of division problems by transforming it into bankruptcy problems under interval uncertainty by interval valued mappings. A similar approach is applied to deal with uncertainty of estate to be divided. Here, a probability interpretation can also be considered e.g. in taxation problems. We consider the division problems under uncertainty of claims and/or estate and present bankruptcy rule, which are consistent with the classical bankruptcy proportional rule. Several examples are presented to illustrate particular problems and solution concepts.

Anglicky

In this paper we focus on real situations where certain perfectly divisible estate has to be divided among claimants who can merely indicate the range of their claims, and the available amount is smaller than the aggregated claim. Funds’ allocation of a firm among its divisions, taxation problems, priority problems, distribution of costs of a joint project among the agents involved, various disputes including those generated by inheritance, or by cooperation in joint projects based on restricted willingness to pay, fit into this framework. The corresponding claim of each claimant can vary within a closed interval or fuzzy interval. For claims, fuzzy intervals are applied whenever the claimants can distinguish a possibility of attaining the amount of estate, and/or its membership degree of a possibility of attainment. When claims of claimants have fuzzy interval uncertainty, we settle such type of division problems by transforming it into bankruptcy problems under interval uncertainty by interval valued mappings. A similar approach is applied to deal with uncertainty of estate to be divided. Here, a probability interpretation can also be considered e.g. in taxation problems. We consider the division problems under uncertainty of claims and/or estate and present bankruptcy rule, which are consistent with the classical bankruptcy proportional rule. Several examples are presented to illustrate particular problems and solution concepts.