2022
Homogeneous Hermitian holomorphic vector bundles and operators in the Cowen-Douglas class over the poly-disc
DEB, Prahllad a Somnath HAZRAZákladní údaje
Originální název
Homogeneous Hermitian holomorphic vector bundles and operators in the Cowen-Douglas class over the poly-disc
Autoři
DEB, Prahllad (356 Indie) a Somnath HAZRA (356 Indie, garant, domácí)
Vydání
Journal of Mathematical Analysis and Applications, San Diego (USA), Academic Press Inc. Elsevier Science, 2022, 0022-247X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/47813059:19610/22:A0000110
Organizační jednotka
Matematický ústav v Opavě
UT WoS
000821504900018
Klíčová slova anglicky
Cowen-Douglas class; Homogeneous operators; Hermitian holomorphic homogeneous vector bundles; Curvature; Representation; Lie algebra
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GA21-27941S, projekt VaV.
Změněno: 1. 3. 2023 15:15, Mgr. Aleš Ryšavý
Anotace
V originále
In this article, we obtain two sets of results. The first set of results are for the case of the bi-disc while the second set of results describe in part, which of these carry over to the general case of the poly-disc. A classification of irreducible hermitian holomorphic vector bundles over D-2, homogeneous with respect to Mob x Mob, is obtained assuming that the associated representations are multiplicity-free. Among these the ones that give rise to an operator in the Cowen-Douglas class of D-2 of rank 1, 2 or 3 are determined. Any hermitian holomorphic vector bundle of rank 2 over D-n, homogeneous with respect to the n-fold direct product of the group Mob is shown to be a tensor product of n hermitian holomorphic vector bundles over D. Among them, n - 1 are shown to be the line bundles and one is shown to be a rank 2 bundle. Also, each of the bundles are homogeneous with respect to Mob. The classification of irreducible homogeneous hermitian holomorphic vector bundles over D-2 of rank 3 (as well as the corresponding Cowen-Douglas class of operators) is extended to the case of D-n, n > 2. It is shown that there is no irreducible n - tuple of operators in the Cowen-Douglas class B-2 (D-n) that is homogeneous with respect to Aut(D-n), n > 1. Also, pairs of operators in B-3(D-2) homogeneous with respect to Aut(D-2) are produced, while it is shown that no n - tuple of operators in B-3(D-n) is homogeneous with respect to Aut(D-n), n > 2.