2023
			
	    
	
	
    Unconstrained Lagrangian Variational Principles for the Einstein Field Equations
CREMASCHINI, Claudio a Massimo TESSAROTTOZákladní údaje
Originální název
Unconstrained Lagrangian Variational Principles for the Einstein Field Equations
	Autoři
CREMASCHINI, Claudio (380 Itálie, domácí) a Massimo TESSAROTTO (380 Itálie, domácí)
			Vydání
 Entropy, 2023, 1099-4300
			Další údaje
Jazyk
angličtina
		Typ výsledku
Článek v odborném periodiku
		Obor
10308 Astronomy
		Stát vydavatele
Švýcarsko
		Utajení
není předmětem státního či obchodního tajemství
		Odkazy
Impakt faktor
Impact factor: 2.100
			Kód RIV
RIV/47813059:19630/23:A0000297
		Organizační jednotka
Fyzikální ústav v Opavě
			UT WoS
000945040800001
		EID Scopus
2-s2.0-85148936692
		Klíčová slova anglicky
Einstein field equations; Lagrangian variational principles; principle of manifest covariance; unconstrained variational principles
		Příznaky
Mezinárodní význam, Recenzováno
		
				
				Změněno: 19. 1. 2024 10:39, Mgr. Pavlína Jalůvková
				
		Anotace
V originále
This paper deals with the problem of establishing a systematic theoretical formulation of variational principles for the continuum gravitational field dynamics of classical General Relativity (GR). In this reference, the existence of multiple Lagrangian functions underlying the Einstein field equations (EFE) but having different physical connotations is pointed out. Given validity of the Principle of Manifest Covariance (PMC), a set of corresponding variational principles can be constructed. These are classified in two categories, respectively, referred to as constrained and unconstrained Lagrangian principles. They differ for the normalization properties required to be satisfied by the variational fields with respect to the analogous conditions holding for the extremal fields. However, it is proved that only the unconstrained framework correctly reproduces EFE as extremal equations. Remarkably, the synchronous variational principle recently discovered belongs to this category. Instead, the constrained class can reproduce the Hilbert-Einstein formulation, although its validity demands unavoidably violation of PMC. In view of the mathematical structure of GR based on tensor representation and its conceptual meaning, it is therefore concluded that the unconstrained variational setting should be regarded as the natural and more fundamental framework for the establishment of the variational theory of EFE and the consequent formulation of consistent Hamiltonian and quantum gravity theories.