2023
			
	    
	
	
    Point and generalized symmetries of the heat equation revisited
KOVAL, Serhii D a Roman POPOVYCHZákladní údaje
Originální název
Point and generalized symmetries of the heat equation revisited
	Autoři
KOVAL, Serhii D a Roman POPOVYCH (804 Ukrajina, garant, domácí)
			Vydání
 Journal of Mathematical Analysis and Applications, San Diego (USA), Academic Press Inc. Elsevier Science, 2023, 0022-247X
			Další údaje
Jazyk
angličtina
		Typ výsledku
Článek v odborném periodiku
		Obor
10101 Pure mathematics
		Stát vydavatele
Spojené státy
		Utajení
není předmětem státního či obchodního tajemství
		Impakt faktor
Impact factor: 1.200
			Kód RIV
RIV/47813059:19610/23:A0000142
		Organizační jednotka
Matematický ústav v Opavě
			UT WoS
001018236500001
		EID Scopus
2-s2.0-85161043260
		Klíčová slova anglicky
Discrete symmetry; Generalized symmetry; Heat equation; Lie symmetry; Point-symmetry pseudogroup; Subalgebra classification
		Štítky
Příznaky
Mezinárodní význam, Recenzováno
		
				
				Změněno: 8. 4. 2024 13:06, Mgr. Aleš Ryšavý
				
		Anotace
V originále
We derive a nice representation for point symmetry transformations of the (1+1)-dimensional linear heat equation and properly interpret them. This allows us to prove that the pseudogroup of these transformations has exactly two connected components. That is, the heat equation admits a single independent discrete symmetry, which can be chosen to be alternating the sign of the dependent variable. We introduce the notion of pseudo-discrete elements of a Lie group and show that alternating the sign of the space variable, which was for a long time misinterpreted as a discrete symmetry of the heat equation, is in fact a pseudo-discrete element of its essential point symmetry group. The classification of subalgebras of the essential Lie invariance algebra of the heat equation is enhanced and the description of generalized symmetries of this equation is refined as well. We also consider the Burgers equation because of its relation to the heat equation and prove that it admits no discrete point symmetries. The developed approach to point-symmetry groups whose elements have components that are linear fractional in some variables can directly be extended to many other linear and nonlinear differential equations.