J 2025

Interval pairwise comparisons in the presence of infeasibilities: Numerical experiments

WANG, Jiaqi, Bruce GOLDEN a Jiří MAZUREK

Základní údaje

Originální název

Interval pairwise comparisons in the presence of infeasibilities: Numerical experiments

Autoři

WANG, Jiaqi (840 Spojené státy), Bruce GOLDEN (840 Spojené státy) a Jiří MAZUREK (203 Česká republika, garant, domácí)

Vydání

Computers & Operations research, 2025, 0305-0548

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10200 1.2 Computer and information sciences

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Organizační jednotka

Obchodně podnikatelská fakulta v Karviné

UT WoS

111111111111111

Klíčová slova anglicky

Decision analysis; Consistency; Feasibility; Interval pairwise comparisons; Simulation
Změněno: 23. 10. 2024 10:00, doc. Mgr. Jiří Mazurek, Ph.D.

Anotace

V originále

Pairwise comparisons constitute a fundamental part of many multiple-criteria decision-making methods designed to solve complex real-world problems. One of the pervasive features associated with the complexity of any problem is uncertainty. Experts are rarely able to consistently and accurately evaluate a set of alternatives under consideration due to time pressure, cognitive bias, the intricacy or intangible essence of the problem, a lack of requisite knowledge or experience, or other reasons. Interval pairwise comparisons (IPCs) allow for this uncertainty in a natural way; however, the problem of inconsistency (or infeasibility) may arise. That is, a set of interval comparisons may not allow experts to find a solution in the form of a priority vector. The aim of this paper is to provide a comparison of existing priority deriving methods for inconsistent (infeasible) IPCs via numerical examples and simulations. Our results indicate that the Interval Stretching Method is the best with respect to preserving original preferences. In addition, the question of the uniqueness of the solution is investigated for selected methods, with the Fuzzy Preference Programming method being the best in providing a unique solution. Since the majority of examined methods provide mostly non-unique solutions, modifying these methods in order to provide unique solutions might be a research direction worth considering in the future.