J 2024

Inversion points of the accretion flows onto super-spinning Kerr attractors

PUGLIESE, Daniela a Zdeněk STUCHLÍK

Základní údaje

Originální název

Inversion points of the accretion flows onto super-spinning Kerr attractors

Autoři

PUGLIESE, Daniela (380 Itálie, domácí) a Zdeněk STUCHLÍK (203 Česká republika, domácí)

Vydání

European Physical Journal C, New York (USA), SPRINGER, 2024, 1434-6044

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 4.400 v roce 2022

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

001168082000001

Klíčová slova anglicky

accretion flows;Kerr super-spinning attractor;spin;orbiting fluids;corona

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 16. 1. 2025 11:58, Mgr. Pavlína Jalůvková

Anotace

V originále

We study the accretion flows towards a central Kerr super-spinning attractor, discussing the formation of the flow inversion points, defined by condition uϕ=0 on the particles flow axial velocity. We locate two closed surfaces, defining inversion coronas (spherical shells), surrounding the central attractor. The coronas analysis highlights observational aspects distinguishing the central attractors and providing indications on their spin and the orbiting fluids. The inversion corona is a closed region, generally of small extension and thickness, which is for the counter-rotating flows of the order of ≲1.4M (central attractor mass) on the vertical rotational axis. There are no co-rotating inversion points (from co-rotating flows). The results point to strong signatures of the Kerr super-spinars, provided in both accretion and jet flows. With very narrow thickness, and varying little with the fluid initial conditions and the emission process details, inversion coronas can have remarkable observational significance for primordial Kerr super-spinars predicted by string theory. The corona region closest to the central attractor is the most observably recognizable and active part, distinguishing black holes solutions from super-spinars. Our analysis expounds the Lense–Thirring effects and repulsive gravity effects in the super-spinning ergoregions.