J 2024

On Recursion Operators for Full-Fledged Nonlocal Symmetries of the Reduced Quasi-classical Self-dual Yang-Mills Equation

JAHNOVÁ, Jiřina a Petr VOJČÁK

Základní údaje

Originální název

On Recursion Operators for Full-Fledged Nonlocal Symmetries of the Reduced Quasi-classical Self-dual Yang-Mills Equation

Vydání

Annales Henri Poincaré, Cham (SW), Springer International Publishing, 2024, 1424-0637

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 1.500 v roce 2022

Organizační jednotka

Matematický ústav v Opavě

UT WoS

001172954900001

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 20. 1. 2025 10:24, Mgr. Aleš Ryšavý

Anotace

V originále

We introduce the idea of constructing recursion operators for full-fledged nonlocal symmetries and apply it to the reduced quasi-classical self-dual Yang–Mills equation. It turns out that the discovered recursion operators can be interpreted as infinite-dimensional matrices of differential functions which act on the generating vector functions of the nonlocal symmetries simply by matrix multiplication. To the best of our knowledge, there are no other examples of such recursion operators in the literature so far, so our approach is completely innovative. Further, we investigate the algebraic properties of the discovered operators and discuss the R-algebra structure on the set of all recursion operators for full-fledged nonlocal symmetries of the equation in question. Finally, we illustrate the action of the obtained recursion operators on particularly chosen full-fledged symmetries and emphasize their advantages compared to the action of traditionally used recursion operators for shadows.