2024
On Recursion Operators for Full-Fledged Nonlocal Symmetries of the Reduced Quasi-classical Self-dual Yang-Mills Equation
JAHNOVÁ, Jiřina a Petr VOJČÁKZákladní údaje
Originální název
On Recursion Operators for Full-Fledged Nonlocal Symmetries of the Reduced Quasi-classical Self-dual Yang-Mills Equation
Autoři
Vydání
Annales Henri Poincaré, Cham (SW), Springer International Publishing, 2024, 1424-0637
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.500 v roce 2022
Organizační jednotka
Matematický ústav v Opavě
UT WoS
001172954900001
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 20. 1. 2025 10:24, Mgr. Aleš Ryšavý
Anotace
V originále
We introduce the idea of constructing recursion operators for full-fledged nonlocal symmetries and apply it to the reduced quasi-classical self-dual Yang–Mills equation. It turns out that the discovered recursion operators can be interpreted as infinite-dimensional matrices of differential functions which act on the generating vector functions of the nonlocal symmetries simply by matrix multiplication. To the best of our knowledge, there are no other examples of such recursion operators in the literature so far, so our approach is completely innovative. Further, we investigate the algebraic properties of the discovered operators and discuss the R-algebra structure on the set of all recursion operators for full-fledged nonlocal symmetries of the equation in question. Finally, we illustrate the action of the obtained recursion operators on particularly chosen full-fledged symmetries and emphasize their advantages compared to the action of traditionally used recursion operators for shadows.