J 2024

Radiating particles accelerated by a weakly charged Schwarzschild black hole

JURAEV, Bakhtinur, Zdeněk STUCHLÍK, Arman TURSUNOV a Martin KOLOŠ

Základní údaje

Originální název

Radiating particles accelerated by a weakly charged Schwarzschild black hole

Autoři

JURAEV, Bakhtinur (860 Uzbekistán, domácí), Zdeněk STUCHLÍK (203 Česká republika, domácí), Arman TURSUNOV (860 Uzbekistán, domácí) a Martin KOLOŠ (203 Česká republika, domácí)

Vydání

Journal of Cosmology and Astroparticle Physics, 2024, 1475-7516

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 6.400 v roce 2022

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

001357790400002

Klíčová slova anglicky

astrophysical black hole;equations of motion;2-body problem in GR and beyond;GR black hole

Štítky

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GA23-07043S, projekt VaV.
Změněno: 29. 1. 2025 09:48, Mgr. Pavlína Jalůvková

Anotace

V originále

It is well known that supermassive black holes in the centers of galaxies are capable of accelerating charged particles to very high energies. In many cases, the particle acceleration by black holes occurs electromagnetically through an electric field induced by the source. In such scenarios, the accelerated particles radiate electromagnetic waves, leading to the appearance of the backreaction force, which can considerably change the dynamics, especially, if the particles are relativistic. The effect of the radiation reaction force due to accelerating electric field of the central body in curved spacetime has not been considered previously. We study the dynamics of radiating charged particles in the field of the Schwarzschild black hole in the presence of an electric field associated with a small central charge of negligible gravitational influence. We use the DeWitt-Brehme equation and discuss the effect of the self-force, also known as the tail term, within the given approach. We also study the pure effect of the self-force to calculate the radiative deceleration of radially moving charged particles. In the case of bounded orbits, we find that the radiation reaction force can stabilize and circularize the orbits of oscillating charged particles by suppressing the oscillations or causing the particles to spiral down into the black hole depending on the sign of the electrostatic interaction. In all cases, we calculate the energy losses and exact trajectories of charged particles for different values and signs of electric charge.