J 2024

On the Viscous Ringed Disk Evolution in the Kerr Black Hole Spacetime

PUGLIESE, Daniela, Zdeněk STUCHLÍK a Vladimír KARAS

Základní údaje

Originální název

On the Viscous Ringed Disk Evolution in the Kerr Black Hole Spacetime

Autoři

PUGLIESE, Daniela (380 Itálie, domácí), Zdeněk STUCHLÍK (203 Česká republika, domácí) a Vladimír KARAS (203 Česká republika)

Vydání

Physics of the Dark Universe, 2024, 2212-6864

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 5.500 v roce 2022

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

001384468100001

Klíčová slova anglicky

black holes;accretion disks;accretion;hydrodynamics;galaxies;actives

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 29. 1. 2025 10:56, Mgr. Pavlína Jalůvková

Anotace

V originále

Supermassive black holes (SMBHs) are observed in active galactic nuclei interacting with their environments, where chaotical, discontinuous accretion episodes may leave matter remnants orbiting the central attractor in the form of sequences of orbiting toroidal structures, with strongly different features as different rotation orientations with respect to the central Kerr BH. Such ringed structures can be characterized by peculiar internal dynamics, where co-rotating and counter-rotating accretion stages can be mixed and distinguished by tori interaction, drying-feeding processes, screening effects, and inter-disk jet emission. A ringed accretion disk (RAD) is a full general relativistic model of a cluster of toroidal disks, an aggregate of axi-symmetric co-rotating and counter-rotating disks orbiting in the equatorial plane of a single central Kerr SMBH. In this work, we discuss the time evolution of a ringed disk. Our analysis is a detailed numerical study of the evolving RAD properties formed by relativistic thin disks, using a thin disk model and solving a diffusion-like evolution equation for an RAD in the Kerr spacetime, adopting an initial wavy (ringed) density profile. The RAD reaches a single-disk phase, building accretion to the inner edge regulated by the inner edge boundary conditions. The mass flux, the radial drift, and the disk mass of the ringed disk are evaluated and compared to each of its disk components. During early inter-disk interaction, the ring components spread, destroying the internal ringed structure and quickly forming a single disk with timescales governed by ring viscosity prescriptions. Different viscosities and boundary conditions have been tested. We propose that a system of viscously spreading accretion rings can originate as a product of tidal disruption of a multiple stellar system that comes too close to an SMBH.