J 2024

Gravitational Self-lensing of Fast Radio Bursts in Neutron Star Magnetospheres. I. The Model

DALL'OSSO, Simone, Riccardo LA PLACA, Luigi STELLA, Pavel BAKALA, Andrea POSSENTI et. al.

Základní údaje

Originální název

Gravitational Self-lensing of Fast Radio Bursts in Neutron Star Magnetospheres. I. The Model

Autoři

DALL'OSSO, Simone, Riccardo LA PLACA, Luigi STELLA (380 Itálie), Pavel BAKALA (203 Česká republika, domácí) a Andrea POSSENTI

Vydání

Astrophysical Journal, GB - Spojené království Velké Británie a, 2024, 0004-637X

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 4.900 v roce 2022

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

001319378300001

Klíčová slova anglicky

flaring magnetar;FRB121102;pulsar;emission;energetics;evolution

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 4. 2. 2025 13:03, Mgr. Pavlína Jalůvková

Anotace

V originále

Fast radio bursts (FRBs) are cosmological subsecond bursts of coherent radio emission, whose source is still unknown. To date, the Galactic magnetar SGR 1935 + 2154 is the only astrophysical object known to emit radio bursts akin to FRBs, albeit less powerful, supporting suggestions that FRBs originate from magnetars. Many remarkable properties of FRBs-e.g., the dichotomy between repeaters and one-off sources, and their power-law energy distributions (with typical index similar to 2-3)-are not well understood yet. Moreover, the huge radio power released by the most active repeaters is challenging even for the magnetic energy reservoir of magnetars. Here, we assume that FRBs originate from corotating hotspots anchored in neutron star (NS) magnetospheres and occasionally get amplified by large factors via gravitational self-lensing in the strong NS field. We evaluate the probability of amplification and show that: (i) a power-law energy distribution of events proportional to E -(2-3) is generally expected; (ii) all FRB sources may be regarded as repeating, their appearance as one-off sources or repeaters being determined by the critical dependence of the amplification probability on the emission geometry and source orientation relative to Earth; and (iii) the most active repeaters, in particular, correspond to extremely rare and finely tuned orientations (similar to 1 in 106), leading to large probabilities of amplification that make their bursts frequently detectable. At the same time, their power release appears enhanced, typically by factors greater than or similar to 10, easing their energy budget problem.