J 2024

Why We Need Desirable Properties in Pairwise Comparison Methods?

PERZINA, Radomír a Jaroslav RAMÍK

Základní údaje

Originální název

Why We Need Desirable Properties in Pairwise Comparison Methods?

Autoři

PERZINA, Radomír (203 Česká republika, domácí) a Jaroslav RAMÍK (203 Česká republika, domácí)

Vydání

JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS, 2024, 1057-9214

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10102 Applied mathematics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.000 v roce 2022

Organizační jednotka

Obchodně podnikatelská fakulta v Karviné

Klíčová slova anglicky

analytic hierarchy process (AHP); coherence; consistency; intensity; multi-criteria decision-making (MCDM); pairwise comparison matrix; priority vector

Štítky

Návaznosti

GA21-03085S, projekt VaV.
Změněno: 6. 3. 2025 14:34, Miroslava Snopková

Anotace

V originále

Pairwise comparison matrices (PCMs) are inevitable tools in some important multiple-criteria decision-making methods, for example AHP/ANP, TOPSIS, PROMETHEE and others. In this paper, we investigate some important properties of PCMs which influence the generated priority vectors for the final ranking of the given alternatives. The main subproblem of the Analytic Hierarchy Process (AHP) is to calculate the priority vectors, that is, the weights assigned to the elements of the hierarchy (criteria, sub-criteria, and/or alternatives or variants), by using the information provided in the form of a pairwise comparison matrix. Given a set of elements, and a corresponding pairwise comparison matrix, whose entries evaluate the relative importance of the elements with respect to a given criterion, the final ranking of the given alternatives is evaluated. We investigate some important and natural properties of PCMs called the desirable properties, particularly, the non-dominance, consistency, intensity and coherence, which influence the generated priority vectors. Usually, the priority vector is calculated based on some well-known method, for example, the Eigenvector Method, the Arithmetic Mean Method, the Geometric Mean Method, the Least Square Method, and so forth. The novelty of our approach is that the priority vector is calculated as the solution of an optimization problem where an error objective function is minimised with respect to constraints given by the desirable properties. The properties of the optimal solution are discussed and some illustrating examples are presented. The corresponding software tool has been developed and demonstrated in some examples.