J 2025

Energy Flow and Radiation Efficiency in Radiative GRMHD Simulations of Neutron Star Ultraluminous X-Ray Sources

KAYANIKHOO, Fatemeh; Wlodek KLUZNIAK; David ABARCA a Miljenko ČEMELJIĆ

Základní údaje

Originální název

Energy Flow and Radiation Efficiency in Radiative GRMHD Simulations of Neutron Star Ultraluminous X-Ray Sources

Autoři

KAYANIKHOO, Fatemeh; Wlodek KLUZNIAK; David ABARCA a Miljenko ČEMELJIĆ

Vydání

Astrophysical Journal, GB - Spojené království Velké Británie a, 2025, 0004-637X

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 5.400 v roce 2024

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

001629202700001

Klíčová slova anglicky

hole accreation discs; nustar J095551+6940.8; Thomson scattering; pulsing ulxs; black holes; pulsar; luminosity; emission; magnetar;swift

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 20. 1. 2026 11:30, Mgr. Pavlína Jalůvková

Anotace

V originále

We investigate numerically the energy flow and radiation efficiency of accreting neutron stars as potential ultraluminous X-ray sources (ULXs). We perform 10 simulations in radiative general relativistic magnetohydrodynamics, exploring six different magnetic dipole strengths ranging from 10 to 100 GigaGauss, along with three accretion rates, 100, 300, and 1000 Eddington luminosity units. Our results show that the energy efficiency in simulations with a strong magnetic dipole of 100 GigaGauss is approximately half that of simulations with a magnetic dipole an order of magnitude weaker. Consequently, radiation efficiency is lower in simulations with stronger magnetic dipoles. We also demonstrate that outflow power increases as the magnetic dipole weakens, resulting in stronger beaming in simulations with weaker magnetic dipoles. As a result of beaming, simulations with magnetic dipole strengths below 30 GigaGauss exhibit apparent luminosities consistent with those observed in ULXs. As for the accretion rates, we find that higher accretion rates lead to more powerful outflows, higher kinetic efficiency, and lower radiation efficiency compared to those of lower accretion rate simulations.