2025
Exploring a novel feature of ellis spacetime: Insights into scalar field dynamics
TURIMOV, Bobur; Akbar DAVLATALIEV; Bobomurat AHMEDOV a Zdeněk STUCHLÍKZákladní údaje
Originální název
Exploring a novel feature of ellis spacetime: Insights into scalar field dynamics
Autoři
TURIMOV, Bobur; Akbar DAVLATALIEV; Bobomurat AHMEDOV a Zdeněk STUCHLÍK
Vydání
CHINESE JOURNAL OF PHYSICS, 2025, 0577-9073
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.600 v roce 2024
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
001440269400001
EID Scopus
2-s2.0-85219132267
Klíčová slova anglicky
Ellis spacetime;particle motion;perturbation
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 22. 1. 2026 10:36, Mgr. Pavlína Jalůvková
Anotace
V originále
We have studied neutral and charged massive particles dynamics in Ellis spacetime in the presence of the external scalar field. Focusing on the circular motion of massive particles, the impact of an external scalar field on the Innermost Stable Circular Orbit (ISCO) position is analysed, revealing a non-linear relationship with the scalar field parameter. Perturbation techniques are employed to investigate oscillatory motion near stable orbits in the Ellis spacetime, yielding analytical expressions for radial and angular oscillations. The throat of the wormhole has been constrained by comparing theoretical and observational results for fundamental frequencies of particles from quasars. Finally, scalar and gravitational perturbations in the Ellis spacetime have been studied. It is shown that the equation for the scalar profile function is fully independent from the tensor functions and the solution can be represented in terms of the confluent Heun function. However, it has been shown that equations for the tensor profile functions strongly depend on the scalar profile functions in the Ellis spacetime and they are reduced to the Regge- Wheeler-Zerilli equation. Finally, numerical solutions to the Regge-Wheeler-Zerilli equation for the radial functions in the Ellis have been presented.