2025
Spinning particle motion around charged black hole from T-duality
RAKHIMOVA, Gulzoda; Farukh ABDULKHAMIDOV; Farruh ATAMUROTOV; Ahmadjon ABDUJABBAROV; G. MUSTAFA et al.Základní údaje
Originální název
Spinning particle motion around charged black hole from T-duality
Autoři
RAKHIMOVA, Gulzoda; Farukh ABDULKHAMIDOV; Farruh ATAMUROTOV; Ahmadjon ABDUJABBAROV a G. MUSTAFA
Vydání
CHINESE JOURNAL OF PHYSICS, 2025, 0577-9073
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.600 v roce 2024
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
001420479200001
EID Scopus
2-s2.0-85216100273
Klíčová slova anglicky
Spinning particle motion;Charged black hole;T-duality
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GA23-07043S, projekt VaV.
Změněno: 27. 1. 2026 13:30, Mgr. Pavlína Jalůvková
Anotace
V originále
This study examines a spinning particle motion around a charged black hole from T-duality. Initially, our investigation focuses on the lapse function of the metric, revealing that the presence of the black hole's charge solely induces a shift in the location of the black hole's horizon. However, with the introduction of l0, we observe the emergence of the second Cauchy horizon (r-). Additionally, we determine the maximum values of black hole parameters within the T-duality framework, guided by the criterion for the existence of the black hole horizon. We employ the Mathisson-Papapetrous-Dixon (MPD) equation to analyze the dynamics of the spinning test particles. Our exploration delves into the influence of the particle's spin and associated parameters Q and l0 on the effective potential. Subsequently, we investigate the innermost stable circular orbit (ISCO) to establish relationships between the particle's energy, angular momentum at ISCO, ISCO radius, and the particle's spin, along with black hole parameters from T-duality. We also focus on superluminal motion, a crucial characteristic distinguishing time-like particles from space-like ones. Numerical values for the particle's critical spin (smax) necessary to maintain time-like behavior are determined. Finally, we address the collision of spinning particles in the proximity of a compact object. Within this context, we endeavor to identify critical values of the particle's angular momentum, permitting particles to approach the compact object closely.