FPF:UF03400 Quantum Field Theory I - Course Information
UF03400 Quantum Field Theory I
Faculty of Philosophy and Science in OpavaWinter 2012
- Extent and Intensity
- 4/2/0. 10 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- prof. Ing. Peter Lichard, DrSc. (lecturer)
- Guaranteed by
- prof. Ing. Peter Lichard, DrSc.
Centrum interdisciplinárních studií – Faculty of Philosophy and Science in Opava - Prerequisites (in Czech)
- UF03203 Quantum Mechanics II
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Theoretical Physics (programme FPF, M1701 Fyz)
- Theoretical Physics (programme FPF, N1701 Fyz)
- Course objectives (in Czech)
- Náplní předmětu je kvantová teorie nejdůležitějších volných polí: skalárního, elektromagnetického a spinorového. Základní myšlenky lagrangeovské a hamiltonovské teorie klasických polí jsou nejdřív vyloženy v analogii s teorií soustav s konečným počtem stupňů volnosti. Přechod ke kvantovému opisu se opírá o analogický přechod od klasické mechaniky ke kvantové. Sylabus (platí pro přednášku i cvičení) Druhé kvantování ? nerelativistická teorie. Bosony; representace obsazovacích čísel pro lineární harmonický oscilátor; operátory kreace a anihilace; lineární řetězec svázaných oscilátorů; třírozměrné mřížky a vektorová pole; spojitá limita; klasická teorie pole; Hamiltonův princip, Eulerovy-Lagrangeovy rovnice; druhé kvantování Schrödingerovy rovnice; zdroje pole; interakce mezi poli; rozptyl fononů; fermiony; kreační a anihilační operátory, antikomutátory; rozptyl; souvislost se statistickou fyzikou; zachování hybnosti při interakcích; interakce fermionů s bosony; díry a antičástice. Relativistické skalární pole. Lagrangeova hustota Kleinova-Gordonova pole; invariance a zákony zachování; tensor energie a hybnosti; teorém Noetherové; Lieovy grupy a vnitřní symetrie; Poincarého grupa a její generátory; nabité skalární pole; kvantování volného pole; Fokův prostor; částicové stavy, Greenovy funkce; kvantování nabitého skalárního pole. Spinorové pole. Unitární representace Poincarého grupy; Lagrangeova hustota; retardovaný a Feynmanův propagátor; kvantování volného spinorového pole; Fokův prostor pro fermiony; antikomutační relace; spin a statistika; částice a antičástice. Kvantování elektromagnetického pole. Kvantování v Coulombově kalibraci; kovariantní kvantování; indefinitní metrika; podélné a skalární fotony; propagátory; vektorové pole s nenulovou hmotností.
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
- Enrolment Statistics (Winter 2012, recent)
- Permalink: https://is.slu.cz/course/fpf/winter2012/UF03400