APDMB041 Inteligentní zpracování dat

Fyzikální ústav v Opavě
léto 2021
Rozsah
2/2/0. 6 kr. Ukončení: zk.
Vyučující
doc. Ing. Petr Čermák, Ph.D. (přednášející)
Garance
doc. Ing. Petr Čermák, Ph.D.
Fyzikální ústav v Opavě
Předpoklady
( FAKULTA ( FU ) && TYP_STUDIA ( B ))
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Studenti se seznámí s vybranými metodami inteligentního zpracování dat, včetně rozhodování nad těmito daty.
Osnova
  • 1. Zpracování zvuku a rozpoznávaní zvuku

  • 2. Markovovy skryté řetězce, aplikace v rozpoznávání hlasu

  • 3. Rozpoznávání obrazu, základní řetězec processingu

  • 4. Vybrané metody segmentace

  • 5. Analýza, detekce a klasifikace segmentů obrazu

  • 6. Detekce významných bodů v obraze

  • 7. Příklady segmentace, klasifikace a detekce významých bodů u medicínských obrazů (CT, MR, US)

  • 8. Zpracování vícerozměrných dat, PCA, redukce dimenze

  • 9. Multikriteriální rozhodování nad vícerozměrnými daty

  • 10. Expertní systémy

  • 11. Příklady analýzy dat pro enviromentální monitoring.

Literatura
    povinná literatura
  • ZELINKA, I. Evoluční výpočetní techniky, principy a aplikace. Praha, 2008. ISBN 978-80-7300-218-3.
  • NOUZA, J.: Pokročilé metody rozpoznávání řeči. 2016 [cit 2018-01-13]. Dostupné online http://itakura.ite.tul.cz/jan/PMR/.
  • MAŘÍK a kol. Umělá inteligence I, II. Praha, 2001.
  • SZELISKI, Richard. Computer Vision: Algorithms and Applications. Berlin, 2010.
  • LEVER, J., KRZYWINSKI, M., ALTMAN, N., Points of Significance . Principal component analysis, https://doi.org/10.1038/nmeth.4346.
  • DOUGHERTY, G. Digital Image Processing for Medical Applications. Oxford, 2009. ISBN 978-0521860857.
Metody hodnocení
Aktivní účast na cvičeních, v rámci ústní zkoušky prokázání znalosti problematiky studijního předmětu.
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.

  • Statistika zápisu (nejnovější)
  • Permalink: https://is.slu.cz/predmet/fu/leto2021/APDMB041